NNSA Blog

A SERF-E operator places a microfilter into operation at the facility.

Cutting the ribbon on the expansion of the SERF.

In an effort to process, treat and recycle up to 300,000 gallons of wastewater per day, Los Alamos National Laboratory launched operations at the new expansion of the Sanitary Effluent Reclamation Facility (SERF-E) with a ribbon cutting ceremony earlier this month.

Each year, LANL produces more than a hundred million gallons of effluent from LANL's sanitary wastewater treatment plant. Instead of being discharged into the environment, the plant pipes the water to the SERF, which treats and reuses it in cooling towers to cool the Strategic Computing Complex.

The facility originally was designed to help LANL meet strict Environmental Protection Agency limits on polychlorinated biphenyl (PCB) discharge in wastewater and reduce the Laboratory’s use of potable (drinkable) water.

Dino Herrera, the Deputy Associate Deputy Administrator for Infrastructure and Construction, oversaw the project and complimented the team that planned and constructed the facility.

“The SERF-E project went from start to finish in four years,” he said. “This is a model for how line-item projects should function, and I applaud the project team for such a great effort.”

About the photos:

A SERF-E operator places a microfilter into operation at the facility.

Cutting the ribbon on the expansion of the SERF marked the official start of the facility’s expanded operations.  The SERF-E can now treat and recycle up to 300,000 gallons of wastewater each day.

Aug 21, 2012 at 2:00 pm

ChemCam

NASA's Mars rover Curiosity fired its laser for the first time this weekend on Mars, using the beam from a science instrument to interrogate a fist-size rock.

The mission's ChemCam, designed and built at Los Alamos National Laboratory, hit the fist-sized rock with 30 pulses of its laser during a 10-second period. Each pulse delivers more than a million watts of power for about five one-billionths of a second.

About the photo:
This composite image, with magnified insets, depicts the first laser test by the Chemistry and Camera, or ChemCam, instrument aboard NASA's Curiosity Mars rover. Image credit: NASA/JPL-Caltech/LANL/CNES/IRAP

Read more about laser test.
ChemCam fact sheet.
See LANL photos.

Aug 20, 2012 at 5:00 pm

More than 357 pounds of food was collected by staff in NNSA's Office of Emergency Operations as part of the 2012 Feds Feed Families campaign. NNSA will continue to host a variety of activities this month to collect food for the campaign. The DOE-wide goal for campaign is to collect 230,000 pounds of non-perishable food items. These items will be donated to local food banks in the D.C. area.

Feds Feed Families

Aug 17, 2012 at 10:00 am
See video

Sandia researchers have developed a cost-effective robotic hand that can be used in disarming improvised explosive devices, or IEDs.

Funded by the Defense Advanced Research Projects Agency, the Sandia Hand project is modular, so different types of fingers can be attached with magnets and quickly plugged into the hand frame. The operator has the flexibility to quickly and easily attach additional fingers or other tools, such as flashlights, screwdrivers or cameras. Modularity also gives the Sandia Hand a unique durability. The fingers are designed to fall off should the operator accidentally run the hand into a wall or another object.

Read about the Sandia Hand project.


About the photos
(by Randy Montoya, Sandia National Laboratories):

Sandia principal investigator Curt Salisbury developed an affordable robotic hand that is dexterous enough to mimic the capabilities of the human hand.
https://share.sandia.gov/news/resources/news_releases/images/2012/hand_cards.jpg

The Sandia Hand addresses challenges that have prevented widespread adoption of other robotic hands, including cost, durability, dexterity and modularity.
https://share.sandia.gov/news/resources/news_releases/images/2012/hand_ball.jpg

Aug 15, 2012 at 5:00 pm

In just a few months, the NNSA’s National Security Campus in Kansas City, MO will be complete and ready for move in.

The new smaller, more efficient Kansas City Plant will reduce annual operating costs by $100 million and supports the NNSA vision of a more responsive and cost-effective nuclear security enterprise. As one of the only LEED Gold certified manufacturing campuses, the green facility will also cut energy consumption by 50 percent.

Aug 10, 2012 at 4:00 pm

Pantex, West Texas A&M University and Texas Tech University have teamed up to conduct a study on understanding the impact of wind farms on birds of prey in the Texas Panhandle.

The program uses radio transmitters and satellite receivers to track the movements of Swainson’s Hawks. The recovered data will be compared to information gathered after the completion of the Pantex Renewable Energy Project (PREP) this fall to determine if the wind turbines affect the hawks, their environment and their home ranges.

Read more about the Pantex hawk study.

Aug 9, 2012 at 5:00 pm

Governors' Liaisons at Joint Base Andrews

NNSA recently hosted a dozen governors' federal liaisons at Joint Base Andrews for a briefing and tour of NNSA Emergency Operations assets and capabilities. In attendance were governors' staff from Alaska, Connecticut, Florida, Kentucky, Maryland, Michigan, New Jersey, New Mexico and Texas and a representative from the National Governors Association Homeland Security Committee staff. Through the display of specialized ground and maritime radiological monitoring assets, NNSA Emergency Operations demonstrated its ability to support states and other federal agencies in preventing radiological and nuclear incidents from occurring domestically.

About the photo:
NNSA Emergency Operations staff demonstrated how its aerial and ground monitoring assets and associated technical expertise manage and coordinate all federal radiological monitoring and assessment activities in response to a domestic radiological or nuclear emergency. Governors' staff commented on how NNSA's Emergency Operations capability extended far beyond its equipment to the high level of technical expertise that their governors could call on for support in making critical public health and safety decisions throughout a radiological or nuclear emergency.

Aug 9, 2012 at 12:00 pm

LANL ships TRU waste to WIPP

For the fourth year in a row, Los Alamos National Laboratory’s TRU Waste Program has shipped a record number of transuranic (TRU) waste shipments to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., for permanent disposal.

LANL’s 172nd shipment of TRU waste this year left Los Alamos bound for WIPP last week. With two months left in the fiscal year, LANL has already surpassed last year’s fiscal year record of 171 shipments. LANL has transported more than 1,000 shipments to WIPP since that facility opened in 1999. 

Read more about the shipments.

About the photo:
LANL’s 172nd shipment leaves the lab on Aug. 2, headed for the Waste Isolation Pilot Plant near Carlsbad, N.M.

Aug 9, 2012 at 11:00 am

Sandia monitors nuclear safety of mission to Mars

A team of Sandia engineers has worked behind the scenes to ensure the smooth launch of the Mars Science Laboratory (MSL).

NASA's $2.5 billion MSL rover, the largest and most sophisticated vehicle to visit Mars, is powered by a multi-mission radioisotope thermoelectric generator, or MMRTG. The generator uses heat from the decay of 10.6 pounds of plutonium dioxide into 110 watts of electricity to move the rover and run a suite of 10 instruments, which can do things like find water 32 feet below the surface and analyze chemical composition of rocks three car-lengths away.

While the MMRTG significantly increases the rover's range and lifetime from previous rovers, which relied on solar panels, launching nuclear material requires diligent attention to safety, and Sandia has been tasked with conducting the safety analysis report.

Read more about Sandia's work with monitoring the mission in Sandia's Lab News (scroll down to third story).

Aug 7, 2012 at 12:00 am

Eye of ChemCamLos Alamos National Laboratory technology has landed on the surface of Mars. Sunday’s successful landing of NASA’s Curiosity rover on Mars marks the beginning of a nearly two-year-long mission that will use a rock-zapping laser device mounted on the mast of the SUV-sized rover to help unravel mysteries of the Red Planet.

The ChemCam laser characterization instrument, developed at LANL and the French space institute, IRAP, is one of 10 instruments mounted on the MSL mission’s Curiosity rover — a six-wheeled mobile laboratory that will roam more than 12 miles of the planet’s surface during the course of one Martian year (98 Earth weeks).

When ChemCam fires its extremely powerful laser pulse, it briefly focuses the energy of a million light bulbs onto an area the size of a pinhead. The laser blast vaporizes part of its target up to seven meters (23 feet) away. The resultant flash of glowing plasma is viewed by the system’s 4.3-inch aperture telescope, which records the colors of light within the flash. These spectral colors are then interpreted by a spectrometer, enabling scientists to determine the elemental composition of the vaporized material. ChemCam also has a high-resolution camera that provides close-up images of an analyzed location. It can image a human hair from seven feet away.

Curiosity is expected to investigate the Gale Crater located close to the equator near the boundary between the southern highlands and the more featureless northern low plains of Mars. The massive crater spans 96 miles in diameter, an area roughly equivalent to the size of Connecticut and Rhode Island combined. A towering mountain, informally named Mount Sharp, rises up nearly three miles above the crater floor. This mammoth feature will provide opportunities for ChemCam to sample geologic layers on the mountainside.

Probing this stratified geology with ChemCam could help researchers understand how the Red Planet transformed over time into a drier, less hospitable climate.

With a mass of nearly a ton, Curiosity is the largest rover ever deployed to another planet. Previously, NASA sent a pair of much smaller rovers, Spirit and Opportunity, to Mars in January 2004. Both rovers gathered a wide range of rock and soil data that have helped provide important information about the wet environments on ancient Mars that may have been favorable to supporting microbial life.

For more information about ChemCam, please visit its website: http://www.msl-chemcam.com

Aug 6, 2012 at 2:00 pm