Skip to main content

You are here

LANL neutron beam breaks world record

Tom Hurry adjusts the target positioner and particle beam diagnostics.

Using a one-of-a-kind laser system, Los Alamos National Laboratory scientists have created the largest neutron beam ever made by a short-pulse laser breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in advanced materials science.

Using the TRIDENT laser, a unique and powerful 200 trillion-watt short-pulse laser, scientists from Los Alamos, the Technical University of Darmstadt, Germany, and Sandia National Laboratories focus high-intensity light on an ultra-thin plastic sheet infused with an isotope of hydrogen called deuterium.

The laser light — 200 quintillion watts per square centimeter, equivalent to focusing all of the light coming from the sun to the earth (120,000 terawatts) onto the tip of a pencil — interacts with the plastic sheet, creating a plasma, an electrically charged gas.  A quintillion is a one with 18 zeros after it. The plasma then accelerates large numbers of deuterons — the nucleus of the deuterium atom — into a sealed beryllium target, converting the deuterons into a neutron beam.

To read more click here.

About the photo:
Tom Hurry of LANL’s Plasma Physics adjusts the target positioner and particle beam diagnostics prior to an experiment at Trident.