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Extended title

Excited state of warm dense matter
or
EXxotic state of warm dense matter
or
Novel form of warm dense matter
or
New form of plasma



Three sources of generation

Fast Single Ions A.V.Lankin, I.V.Morozov,

G.E.Norman, S.A. Pikuz Jr., I.Yu.Skobelev
Solid-density plasma nanochannel generated by a fast

single ion in condensed matter
Physical Review E 79, Issue 3, 036407 (13 pp) (2009)

Laser J.Wark. Saturable absorption of intense XUV

radiation, and a novel form of warm dense matter
Plenary talk at 36th EPS Conference on Plasma Physics,
June 29 - July 3, 2009, Sofia, Bulgaria.

B.Nagel et a/ (54 coauthors) Nature Physics (2009)

Exploding wires 6.E. Norman, v.V. Stegailov, A.A.

Valuev. Nanosecond Electric Explosion of Wires: from
Solid Superheating to Nonideal Plasma Formation
Contrib. Plasma Phys., V. 43. P. 384-389 (2003)




similarity:
solid state density, two temperatures:
electron temperature about tens eV,

cold ions keep original crystallographic positions,
but electron band structure and phonon dispersion are changed,

transient but steady (quasi-stationary for a short time) state of
non-equilibrium, uniform plasmas (no reference to non-ideality,
both strongly and weakly coupled plasmas can be formed)

spectral line spectra are emitted by ion cores embedded In
plasma environment which influences the spectra strongly,

lifetime limiting processes:
electron-phonon exchange, recombination, collisional electron
cooling.

Diversity is considered in the conclusion



Motivation

aging of fissible material




Motivation

lon implantation
INto semiconductors

3 Mev/p Au ion tracks
in Indium Phosphide

100 nm // A. Kamarou et al., PRB, 2006



Motivation

Cancer therapy

GSI, Darmstadt — 1000 patients / year
ITEP, Moscow — 100 patients / year
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SPACE AND TIME SCALES



Spatial scales
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The main idea is in looking inside the heavy ion track
immediately after the ion interacts with a target
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X-RAY SPECTROSCOPY
EXPERIMENTAL DATA

D.H.H. Hoffmann, O. Rosmej, A. Blazevic, S. Korostiy, A
Fertman , S.A. Pikuz Jr. ,V.P. Efremov ,

Gesellschaft fur Schwerionenforschung 65I, Darmstadt,
Germany
Technical University, Darmstadt, Germany
Institute of Experimental and Theoretical Physics, Moscow,
Russia
Joint Institute for High Temperatures RAS, Moscow, Russia



Low-current ions flow
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Every following ion in the low-current beam interacts with the cold area of a target
(wasn’t’ excited before or already has fully relaxed) and makes a contribution
to the statistics of independent acts of single ions which propagate in solid media
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Experimental setup (6SI, Darmstadt, Germany)
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Influence of specific deposited energy
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Solid aluminum target excitation by Mg ions
with different initial energies
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PLASMA MODEL
SUGGESTED



Preassumptions

Electron velocity distribution is Maxwellian,
lons keep the initial crystal lattice.

Electron temperature&density are constant,
smearing and recombination are frozen

Kinetics of
excited state populations
and K-vacancy depopulation
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Be-like ion relaxation
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Kinetic equation for autoionizing state of ion Z
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Adjustment of the model
to the experimental data



Intensity, a.u.

Si ions in SiO, aerogel, 100 ym from surface
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Intensity, a.u.

Si ions in SiO, aerogel, 800 ym from surface
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Intensity, a.u.

Si ions in SiO, aerogel, 1200 ym from surface
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Intensity (arb. units)

Comparison with experiments

Projectile: Mg*’

Target: solid Al
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Intensity (arb. units)

Comparison with experiments
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Plasma parameters measured

lon - Target lon Energy Measured values
MeV/u 0. (0) T (V)
Ni*4 — SiO, 11 0,33 14
Ni*4 — SiO, 6 0,335 15
Ni*4 — SiO, 3 0,34 25
Mg*’ — Al 11 0,235 25
Mg*’ — Al 3 0,285 40

The values considered as initials for MD relaxation modeling:

Free electron density Mean enerqy of free electrons

~ 4*10%3 cm?3 ~10-50eV



SELF CONSISTENCY OF
THE PLASMA MODEL DEVELOPED

Molecular dynamics
modeling&simulation
are used
to check the preassumptions



Preassumptions

Electron velocity distribution is Maxwellian,
lons keep the initial crystal lattice.

Electron temperature&density are constant,
smearing, cooling and recombination
are frozen for the period of X-ray emission
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Electric double layer

front of ions
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Conclusions

Plasma model is developed for the initial stage of
solid media excitation by a single swift heavy ion:
- free electrons with Maxwell velocity distribution
- constant electron temperature of ten’s eV
- constant electron density ~ 1023 cm3
- solid-state Ionic lattice Is stable, Z=2 -7

The values of two plasma parameters are adjusted
to eight line results obtained by the X-ray spectroscopy

Molecular dynamics modeling&simulation
are used to validate the self consistency
of the plasma parameters adjusted and
preassumptions of the plasma model developed
over the range of projectile ion energy range available



Similarity of novel forms of WDM generated
by fast single ions, XUV laser, exploding wires

solid state density, electrons are heated up to tens eV,

cold ions keep original crystallographic positions,

but electron band structure and phonon dispersion are changed
(examples are given in tomorrow’s Stegailov’s talk),

transient but steady (quasi-stationary for a short time) state of
non-equilibrium, uniform plasmas (no reference to non-ideality,
both strongly and weakly coupled plasmas can be formed)

spectral line spectra are emitted by ion cores embedded In
plasma environment which influences the spectra strongly
(another example was given in today’s Lankin&Norman'’s talk),

lifetime limiting processes:
electron-phonon exchange, collisional electron cooling,
recombination (remember suppression in Lankin&Norman'’s talk).



The main difference between WDM created by
X-ray lasers and single fast heavy ion

X-ray laser: two steps heating
K2L8M" + X-ray photon =) K2L’M" + e (photoionization)

KL’M" ) KZL8M"-1+ e (Auger recombination)

Fast heavy ion: also two steps
K2LBMn + A*9 ) KL8-k + A*d + (k+1+n)e (impact ionization)
KL8-k ) K2L8k! + e (Auger recombination)

(k+1+n) >> 1 second step is not important in this case




Diversity

properties XUV laser fast single ions exploding wires
degree of K-shell none small but important small
lonization for diagnostics
degree of L-shell small medium any
ionization
Auger decay very important small contribution not important
heating
diagnostics VUV and UV X-ray emission energy deposition
emission
space configuration | cylindrical flat layer nanochannel microcilinder
lifetime from fs’s up to ns’s picoseconds nanosecond?

limiting processes

electron-phonon exchange and spinodal decay

inertial dispersion collisional recombination and cooling

surface melting
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