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Part I   Introduction
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Physical phenomenon related to

thermal motion

• thermal expansion (linear, nonlinear)

• heat conduction 

• dissipation 

• phase transitions (melting, transitions in Fe, ect.)

• equations of state (Mie-Gruneisen, etc.)

• wave propagation (elastic waves, shocks)
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Methods for description of thermal motion

Phenomenological approach (classical 

thermodinamics)

Statistical approaches (statistical physics)

Molecular dynamics

The only method which takes thermal motion into account explicitly!
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numerical       solution

Molecular dynamics

Newtonian equations of motion

1...

i ij external

i

mr F F

i N

= +

=

∑ɺɺ

Initial conditions, constraints

( ), ( ), ( ),... 1...i i ijr t r t F t i N=ɺ

Results

Interpretation ? 

Comparison with experimental data ?
Connection with thermodynamics ?
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Part II  Theory

discrete system continuum
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• Smooth particle approach 
R.J. Hardy Journal of Chemical Physics, (1982).

J.A. Zimmerman, et. all, Modelling Simul. Mater. Sci. Eng. (2004)

W.G. Hoover, “Smooth particle applied mechanics”, World Scientific, 2006.

• Thermo-mechanically equaivalent continuum (TMEC)
M. Zhou. Proc. R. Soc. A (2003)

M. Zhou. Proc. R. Soc. A (2005).

• Long-wave approach 
M. Born, K. Huang, Dynamical theory of crystal lattices (1988).

A.M. Krivtsov. “Deformation and fracture of bodies with microstructure”. M., (2007). 

A.M. Krivtsov, V.A. Kuzkin. Mechanics of Solids, 2009 [paper in press]

Different approaches
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Hypotheses

• Structure
Perfect crystals of simple structure are considered

• Discrete system              Continuum
Long wave assumption is used (Born, Huang 1988)

• Thermal effects
Decomposition particles’ motions into continual and thermal parts is used. 

The following averaging operator is applied:

• Interactions
Potential energy per particle depends on all vectors connecting the given

particle with its neighbors

1 D
2 D 3 D

, 0f f f f= + ≡ɶ ɶ
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Kinematics of discrete system and equivalent continuum

αA
αa

α−A

α

α− α−

αα aa −=−

α

Reference configuration Actual configuration

α−a

, ,A A A a u u A u uα α α αα α α α= + = + − = −ɶ ɶ ɶ ɶA

Connection with displacements of particles

Connection with deformation measures
0

( ) ( ) ,

( )

A R r a R r a R

R r r u

α α α= + − ≈ ⋅∇

= + Long-wave 

assumption

2

0 0
T

A a a G

G R R

α αα = ⋅⋅

 
= ∇ ⋅ ∇ 

 
Cauchy-Green

measure
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where       is a set of all particles

Interactions

{ }( )α α∈Λ
Π = Π A

Let us assume that potential energy per particle depends all vectors  αA

Particular cases

• Pair potentials

• EAM-like potential

• Tersoff-like potentials (energy depends on angles between bonds) 

1
(| |), | |

2
αα α

α

ϕΠ = =∑ A A A

( (| |)),
E α

α

ψ ρΠ = ∑ A

{ }( ),α β α β
ψ

∈Λ
Π = ⋅A A

ψ - embedding function,        - electron density
Eρ

Λ
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Here         is force acting between two particles

Balance of momentum. Potential of the general type 

( ) ( )r r aα α α−Φ = −Φ −

Equation of motion of the reference particle 

{ }( ), ( )t

t

mu r a
u

β αα α β
α

∈Λ

∂  
= − Π + Π Π = Π + ∂  

∑ɺɺ A

Calculating the derivatives one can obtain

( )
1

, ( ) ( ) , 2
2

tmu F r F r a Fα α α α αα
α α

−

∂Π
= Φ Φ = − + =

∂
∑ɺɺ

A

αΦ

0 01 1 1
( ) ( )

2 2 2
mu F r F r a a F a Fα α α α αα α α

α α α α

 
= Φ = − − ≈ ⋅∇ = ∇⋅ 

 
∑ ∑ ∑ ∑ɺɺ

0

1

2
P a F

V
αα

α

= ∑

1

2
A F

V
α α

α

τ = ∑

0

0

0

1

2
u a F

V
αα

α

ρ
 

= ∇⋅ 
 

∑ɺɺ

0

0 u Pρ = ∇⋅ɺɺ

Discrete system
Piola stress

tensor

Similarly in the actual configuration Cauchy stress

tensor

Continuum

Long wave 

assumption
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Then in the stationary case 

, ,Krivtsov Kuzkin Hardy Zimmerman
τ τ=

0.

,

1 1

2 2K K
uu uu F a u F

V V
α αα α α

α α

ρ ρ τ− = − + ⋅∇∑ ∑ɺ ɺ ɺ ɶɶ ɶ ɶ ɶ ɶA

Comparison with known expressions for 

Cauchy stress tensor

• Hardy, Zimmerman

• Zhou

• Krivtsov, Kuzkin

,

1

2H Z
F uu

V
αα

α

τ ρ= −∑ ɺ ɺɶ ɶA

1

2Zhou
F

V
αα

α

τ = ∑ A

,

1

2K K
A F

V
α α

α

τ = ∑

Using equation of motion one can show that
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{ }( )2

0 0

0

1 1
( )

2 2
v v

V
α α

α

ρ ρ
∈Λ

= + + Π∑ɶE A

0

1

2
h a F u

V
αα α

α

= − ⋅∑ ɺɶ ɶ
1

2
H A F u

V
α α α

α

= − ⋅∑ ɺɶ ɶ

Let volumetrical forces and volumetrical heat sources are absent. 

The specific total energy per unit volume in the reference configuration

has form

Calculating the derivative with respect to time one can obtain

For discrete system ( )
0 0

0

0

1

2
P v a F u

V
αα α

α

ρ
 

= ∇⋅ ⋅ + ∇⋅ ⋅ 
 

∑ ɺɶɺ ɶE

Heat flux related 

to the reference configuration

Balance of energy

( )
0 0

0 P v hρ = ∇⋅ ⋅ − ∇⋅ɺEFor continuum

Heat flux related 

to the actual configuration
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,H h A aα α≈ ≈

3 31

2

S

H a C uu C uuα αα α
α α

 
= ∇⋅ ⋅⋅ − ⋅⋅ 

 
∑ ∑

i ɺɶ ɶ ɶ ɶ

2

dkT m u= ɺɶ

Let us consider small thermal oscillations in free crystal. In this case

Expanding heat flux with respect to      one can obtainAα
ɶ

Kinetic definition of the temperature

Expanding temperature into the same series and leaving only first order terms

one obtains

3 3

3

0 2

1

2

1 1

2

S

H a C uu C uu

dkT mE uu V a C u A
a

α αα α
α α

αα α
α

  
= ∇⋅ ⋅⋅ − ⋅⋅  

  

 = ⋅⋅ + ⋅ ⋅⋅


∑ ∑

∑

i

ii

ɺɶ ɶ ɶ ɶ

ɶɶ ɶ ɶ

, ,
SS S

uu uu uuα α
ɺɶ ɶ ɶ ɶ ɶ ɶConstitutive parameters

Constitutive relations for heat flux
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Part II 

Applications: Equations of state. Waves propagation
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Equations of state. “Cold” and “thermal” components.

Let us represent       and      as a sum of two componentsτ U
0 0

0
( ) ( , )

TT
R R Uτ τ τ= ∇ + ∇

0

0 ( )
T

U U R Uρ ρ ρ= ∇ +

Connection with micro paramaters

2

0

1 1 1
( ), ( ) ( )

2 2 2
a a a aT

U A U u A A A
V Vα α

ρ ρ ρ  = Π = + Π + − Π ∑ ∑ɺ ɶɶ

( )
0

1 1
( ), ( )

2 2T
A F A A F F A

V V
α α α α α α α

α α

τ τ= = −∑ ∑

Equation of state for cold components was derived in the book 

A.M. Krivtsov “Deformation and fracture of bodies with microstructure”

0

0

1
(| |),

2
U a R

V
α

α

ρ = Π ⋅∇∑
0 0

0

1
( )

2
R a F a R

V
αα α

α

τ  
= ∇ ⋅ ⋅∇ 

 
∑
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1 1

1

1
( ) ( ) , ,

!

n nn nn n

n
n

d F
F A A F A F A F A A

n d A

α
α α α α α αα α α α

α

∞
+ +

=

+ = + = = ⊗∑ɶ ɶ ɶ ɶ⊙

Equation of state for thermal components

21 1
( ) ( )

2 2
a a aT

U u A A A
V α

ρ ρ  = + Π + − Π ∑ɺ ɶɶ

( )
1

( )
2T

A F F A
V

α α α α
α

τ = −∑

Let us expand the following expressions into series with respect to aAɶ

Thereto let us use the expression

As a result assuming that                        one obtains

22
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1

1 1

4

nn
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U F A

V n α α
α

ρ
∞

=
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0
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+
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, 1..
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α

= ∞ɶ

Constitutive parameters
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Mie–Gruneisen equation of state

� – thermal pressure

� – thermal energy

� – specific volume

� – Gruneisen’s coefficient

( )
T T

V
p U

V

Γ
=

Tp

)(VΓ

T
U

V

tr
0

1
( ) ,

T
p p

d
τ=− − where      - dimension  (1,2 or 3)d

tr
0 0

1
( ) |

A
p

d α

τ
=

=− ɶ - ‘cold’ pressure 
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First approximation. Generalized Mie-Gruneisen EOS

( )1
2 ,

2
T

U E A A A A
V

α α α α
α

ρ ′= − Φ + Φ ⋅⋅∑ ɶ ɶ

1
2 2

2
A A E A E A A A A A A A

V
α α α α α α α α α α

α

τ ′ ′ ′′ = − Φ + Φ + Φ ⋅⋅ ∑ ɶ ɶ

Let us leave only first nontrivial terms in the expansions, then

EAA ηαα =
~~

Assume that 

( )

( )

2

2

( 2) 2

,
2

TT

d A A A A

U
d A

α αα α
α

α
α

τ ρ

′ ′′+ Φ + Φ

= Γ Γ =
′Φ + Φ

∑

∑

Then the generalized Mie-Gruneisen EOS has the following form
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Gruneisen function: comparison with the experimental data
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Second approximation. Nonlinear EOS

2

1 2

2

3 4

T

T

p f f

U f f

η λη

η λη

 = +


= +

Expanding into series, leaving only terms of order of

and assuming that

One can obtain the following system connecting pressure and thermal energy

( )
knknnn eeeeeEeEE

dd
AAAA ++

+
=

)2(

~~~~
2λη

αααα

αααα AAAA
~~~~

,
T T

p U

2

2 3 1 4 3 3 4 2

2

4 4

( )( 4 )

2

T

T T

f f f f f f f U f
p U

f f

λ

λ

− − +
= +

Nonlinear EOS

2
2~

4~

α

α

λ

A

A

=
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Hugoniot

, ,p U V+ + + , ,p U V− − −

( ) ( )
1

2
U U p p V V+ − + − − +− = + −

Conservational laws
shock

v

• Hugoniot for Mie Gruneisen EOS (Glushak, Kuropatenko, 1992)

- Hugoniot in hydrodynamic approximation

Let
0 0 0( ), , 0, , .

H
U U V V V p p p U U− − − + += = = = =

• Hugoniot for nonlinear EOS

( )* * * * 0: 2 ( ) 0!!!V V V V V∃ + Γ − =
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Comparison with experimental data (Altshuller, 1965)

Hugoniots and cold curves for Cu and Pb

Parameters of the model:

• Morse potential (copper , lead )

• Two coordination spheres
34.65, 0.031 MBarD

a
aα = = 34.47, 0.013D

a
a MBarα = =
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( ) ( )
0 0 0*

* * * *

0 0

T T

T Tu U U u U U u= ∇⋅ + → = + ⋅⋅ ⋅ ∇ ∇ɺɺ ɺɺ

0 0

0 0 0 0
( ) ( )

T T
U P R U U P P Rρ ρ   

= ⋅⋅ ∇ → + = + ⋅⋅ ∇   
   

i i

iɺ

Nonlinear wave equation in adiabatic approximation

Let us assume that heat flux is equal to zero or constant over space

*

0 00
P Uρ=

0
*

0( , )
T TT

P R U Uρ∇ =

Hereinafter 
*

0

def d

d R

ψ
ψ =

∇

Differential equation with respect to
0

( )
T

U R∇

Substituting the last expressions into equation of motion one obtains

If equation of state is given in the form                       then
0

( , )
TT T

P P R U= ∇

0 0 0 0
*

0 00
0

1
T T

T T T

T
T

P P
u P u P u

UR

ρ
ρ

 ∂ ∂
 = ⋅⋅ ⋅ ∇ ∇+ + ⋅⋅ ⋅ ∇ ∇

∂ ∂ ∇ 

ɺɺ
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First approximation. Uniaxial deformation

Let us consider uniaxial deformation of the medium in direction e

Then equation of balance of energy takes form

As a result one can obtain closed wave equation

In the case                 one obtains linear wave equation| | 1u′ ≪

the influence of thermal motion
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Results

� The generalization of approach for transition from discrete system to

equivalent continuum in the case of potential of he general type is conducted

� Expressions connecting stress tensors with parameters of microstructure are

obtained

� Comparison with known expressions for Cauchy stress tensor is conducted

� Approach for equations of state obtaining is generalized for 3D case 

� Equations of state in Mie-Gruneisen form and more general nonlinear form

are obtained 

� Comparison with experimental data is presented   
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2)  Modeling of creation of carbonic materials

Future work

3)  Continualization of rod-like and shell-like nano structures
nanotube shell

Molecule, fiber Rod, cable

1) Macroscopic dissipation         thermal motion

4) Identification of residual stresses using TSA technique 
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Thank you for your attention !


