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Outline of this presentation

• A new and accurate approach for large-strain Eulerian
thermoelasticity.

• The standard hypoelastic Eulerian approach: there
are fundamental problems with these equations.

• The hyperelastic Eulerian approach: as of today, we
know of no algorithms that accurately solve this fully
conservative set of equations.

• The Flux Distribution method: developed for MHD,
this approach is ideal for Eulerian hyperelasticity.

• Summary

This presentation uses only words and equations to describe
this new approach, but contains no computational results.
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We propose a new approach for accurate direct
Eulerian simulation of dynamic elastic-plastic flow.

• What is the new approach?
– This approach incorporates the recent “Flux Distribution” method.
– This method was developed for — and successfully demonstrated

on — Eulerian MHD, which has the constraint:  div B = 0.
– The same ideas can be applied to large-strain Eulerian

thermoelasticity, which has the similar constraint:  curl g = 0.

• Has anyone already tried or implemented this approach?
– No!  But this research could directly affect many simulations.

• Why is this important?
– The standard (hypoelastic) approach for Eulerian thermoelasticity

has fundamental problems.
– For example, conservation is not maintained — this is particularly

important for shock waves.
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What are the standard equations of motion
for dynamic solid response?

• The standard conservation laws for thermoelasticity*
are used in (almost all) Eulerian schemes.
– This is a quasi-linear system in terms of the Cauchy stress:
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• Typically, these equations are augmented by hypoelastic
constitutive laws (incremental Hooke’s law):

• In 3D, these are 11 equations for 11 unknowns:
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where
= rate of deformation

* Plohr, B.J., Plohr, J.N., “Large Deformation Constitutive Laws for Isotropic
Thermoelastic materials,” LANL Report LA-UR-05-5471 (2005).

stress deviator

Stress
evolution

equations
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What are some problems with this approach?
• For the hypoelastic model, the current stress: (1) is a

functional of deformation history, and (2) its value
depends strongly on the numerical method used.

• Thermodynamic consistency is often a problem.
– The moduli K and G  are often assumed constant: not consistent.
– One should calculate K, G (+ missing terms) as derivatives of the

free energy with respect to the (non-linear) strain tensor.

• The momentum equation is not frame indifferent.
– “Frame indifferent” means that a rigid-body motion does not

change the results.
– The standard way to address this problem is to replace the

material time rate with an objective time rate.
– But there are many different objective rates.  Which objective rate

should one use?  What is the correct right hand side?
– How does one consistently model nonlinear thermo-elastic effects?
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What else is wrong with the standard approach?
• These standard quasi-linear equations are not in

conservation form (important for shock waves).
– This leads to numerical inaccuracy and non-physical behavior.
– Stress is not a conserved quantity (which one should evolve).

• Plohr & Plohr* (P&P) document the errors in this approach.

– There are 4 main differences, all of approx. the same magnitude,
between these equations and the usual hypoelastic formulation.

– The RHS of (1,2) depends on the inverse deformation gradient
g, which is not computed in the standard approach.

– P&P show that the full, correct equations can be written:
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– One difference is accounted for: the Z-J objective rate (LHS of (2)).

(1)

(2)

– The other differences (i.e., RHS of (1,2)) are not accounted for.

* Plohr, B.J., Plohr, J.N., “Large Deformation Constitutive Laws for Isotropic
Thermoelastic materials,” LANL Report LA-UR-05-5471 (2005).

Vorticity tensor

bijkl = Birch-Wallace
elasticity tensor
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Nonlinear thermoelasticity can be described by
a set of fully conservative equations.

• The 1st order system of (true) conservation laws is:
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• In 3D, this set of relations has 14 fundamental
equations for the following 14 unknowns:

The inverse deformation gradient is:

The specific total energy is:
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There are two non-standard elements in
this hyper-elastic formulation.

1. Thermoelastic model is based on the Helmholtz free
energy ψ :
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– The constraint comes from using
both v and g as independent
variables, which is required to
write a 1st-order system of eq’ns.

– Consistency — thermodynamic, kinematic, and dynamic — is
automatically enforced with this model in the conservation laws.
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This fully conservative formulation can be
extended to viscoplasticity.

• It is straightforward to add viscoplastic response.
– Add a plastic state vector Up to the free energy:

– Add conservation laws (advection + source) for Up :

• Like the thermoelastic model, this viscoplastic modeling
is deformation- or strain-based.

• Strain-based modeling is advantageous for highly
nonlinear phenomena, such as such as elastic phase
change or multiaxial (e.g., polycrystal) plasticity.
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The “Flux Distribution” approach leads to an
algorithm that preserves a critical constraint.

• Eulerian continuity equations imply an intrinsic constraint:

– If a solution is curl-free at t = 0, then it is curl-free for t > 0.
– This is formally similar to the  div B = 0  constraint in MHD.
– How can one include this important property in a cell-centered,

Godunov scheme?

• Flux Distribution approach: M. Torrilhon* (ETH-Zürich).
– Main idea: calculate the distribution of fluxes in the complete

neighborhood of a given computational cell.
– Combine all of these fluxes so that the intrinsic constraint is

enforced discretely.
– More precisely, the constraint is enforced exactly and locally.
– This approach is independent of how the fluxes are computed.

 For example, you can use any Riemann solver that you choose.

the curl of the elements of g are zero:  ειjk gα
j;k = 0. Permutation

symbol

“Intrinsic
constraint”

* Torrilhon, M., “Locally Divergence-Preserving Upwind Finite Volume Schemes for
Magnetohydrodynamic Equations,” SIAM J. Sci. Comput., 16, 1166–1191 (2005).
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The Flux Distribution basis depends on
the particular constraint equation.
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• One must derive a discrete approximation C, corresponding
to the continuous constraint equation C(U) = 0, that satisfies:

• A finite volume scheme can be written:
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– For the elasticity case, this constraint is  curl g = 0 — but we have
not worked out the details yet, nor has anyone else…
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The Flux Distribution concept has been
developed for other sets of equations.

– The continuous curl operator C is discretized to C = curl(*) as:

• The construction of an algorithm reduces to: (1) designing
a mimetic discrete constraint operator, and (2) embedding
this operator in a stable conservative difference scheme.
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 +  div u =  0
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u;t  +  grad p(!) =  0

� 

C(u) =  curl u =  0

• Example*:  the system of 2D non-linear wave equations:

+   constraint:

* Jeltsch, R., Torrilhon, M., “On Curl-Preserving Finite Volume Discretizations
for Shallow Water Equations,” BIT Numer. Math., 46, S35–S53 (2006).

curl(*)(u)|i,j = (1/2) ({ζi+1,j}y – {ζi–1,j}y)/∆x + (1/2) ({ζi,j+1}x – {ζi,j–1}x)/∆y

where the y-direction averaging
operator {•}y  is defined as:

{ζi,j}y ≡ (1/4) (ζi,j+1 + 2 ζi,j + ζi,j-1)
and similarly for the x-direction operator {•}x

Kcurl(*)(u)|K :
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The shape functions are determined by the
null space of the discrete constraint operator.

• Here, the nullspace of curl(*)(u)|i,j  is four-dimensional.

• One element, Φ(1)
i,j , vanishes except in the upper right

quadrant of the 3 × 3 stencil that is centered at cell K=(i,j):

• Recall that the shape functions (i) determine the differencing
scheme and (ii) obey the constraint intrinsically.

Φ(1)i, j|i+1, j+1 = [∆y, ∆x]T

Φ(1)i, j|i, j = [–∆y, –∆x]T

Φ(1)i, j |i, j+1 = [–∆y, ∆x]T

 Φ(1)i, j|i+1, j     = [∆y, –∆x]T

– The other elements, Φ(2)
i,j , Φ(3)

i,j , Φ(4)
i,j , are similar,

but they are centered on the other corners of cell K.

K

∆y
∆x
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For this case, we can compare the classical
and curl-preserving finite volume schemes.

– There are similar expressions at the other edges

• The classical y-momentum update
is written in terms of edge FDs as:
Φ(class)

i, j+1/2 |i, j = (∆t/∆y) pi, j+1/2 [0, –1]T

Φ(class)
i, j+1/2 |i, j+1 = (∆t/∆y) pi, j+1/2 [0, 1]T
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• Instead, the curl-preserving FD at this edge is given by:

Φ(curl-free)
i, j+1/2 |i, j = (∆t/(∆x∆y)) pi, j+1/2 (  Φ(1)i,j|i,j  +  Φ(2)i,j|i,j  ) / 8
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• The classical y-momentum update is not
curl-preserving, since it can not be
written as a linear combination of  {             }.
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There are three main theoretical elements
of this approach. (1/2)

1. The strain-based material modeling framework.

2. The Flux Distribution method:

– This part is well developed:  there are many papers that
describe strain-based elasto-plasticity.

– Existing stress-based models can be put in this form.
– R. Menikoff (LA-UR-03-0047-rev, LA-UR-1505-rev) gives a

detailed development of the conservative framework and
elastic-plastic wave analysis.

– B. Plohr & J. Plohr (LA-UR-05-5471, LA-UR-05-6333) give a
detailed discussion of an isotropic, thermoelastic model for
3rd-order energy with volumetric / deviatoric decomposition.

– This element is not well developed (yet) for thermoelasticity.
– In other words, this will require additional development.
– M. Torrilhon developed this method extensively in 2D for MHD

and other systems — but not thermoelasticity / viscoplasticity.
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There are three main theoretical elements
of this approach. (2/2)

2. The Flux Distributions method (continued)
– Elastoplasticity: appropriate operators and numerical schemes

have not yet been developed.
 2D: should be fairly straightforward.
 3D: the three vector curl-constraints are a completely new issue.

3. Various computational aspects
– These aspects are both complicated and intricate.
– A conservative elasto-plastic framework was implemented by

G. Miller & P. Colella: J. Comput. Phys. 167:131–176 (2002).
 This scheme is not constraint-enforcing;  rather, the magnitude of

constraint error is reduced by diffusing it artificially.
 The flux distribution method should be superior to this approach.

– We have begun implementing the basic cell-centered Godunov
machinery in a research code.
 This code already has hyper-elastic constitutive models.
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Summary of this presentation

• We described a new and accurate approach for large-
strain Eulerian thermoelasticity / viscoplasticity.

• There are fundamental problems with the standard
hypoelastic Eulerian approach.

• The hyperelastic Eulerian approach:  no algorithms
accurately solve this fully conservative set of equations.

• The Flux Distribution approach: this approach (developed
for MHD) is perfect for Eulerian hyperelasticity.

• We have outlined this new and accurate approach, but
much work remains to be done:
– We must develop the appropriate operators that discretely

enforce the  curl g = 0  constraint.
– We must embed those operators in a conservative elasto-plastic

algorithmic framework.
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Abstract

The simulation of dynamic, large strain, multi-material deformation and failure is an important, difficult, and
unsolved computational challenge.  Material models for solids are most easily represented in the Lagrangian
(material-fixed) frame.  Many problems cannot be simulated with a conventional Lagrangian approach because
the mesh cannot accommodate large shear strain and material rotation.  Simulation in the Eulerian (space-
fixed) frame is not subject to Lagrangian mesh distortion issues.  However, existing Eulerian schemes suffer
from unsolved difficulties when solid materials are involved.  One fundamental issue is that Eulerian schemes
typically treat only the fluid variables (mass density, momentum, and fluid energy) in conservation form.  Such
formulations do not represent all of the conservation laws that govern the material motion.

We propose a different scheme in which the entire system of large-strain, elasto-visco-plasticity equations in
the Eulerian frame is written in first-order conservation form.  This system contains an intrinsic constraint that
must be discretely enforced.  Standard Godunov-type schemes cannot satisfy this constraint.  A recently
developed approach, the method of Flux Distributions, has been devised to discretely enforce this type of
constraint for numerical schemes with cell-centered variables.  Numerical results for magnetohydrodynamics
(MHD) simulations have demonstrated that this approach exactly enforces the divergence-free constraint on
the magnetic field.

We present a non-linear, hyperelastic constitutive framework that allows for large elastic volumetric strain
together with modern, large-strain, thermo-visco-plastic models.  For these equations, the necessary
constraint is that the curl of the inverse deformation gradient vanishes identically.  This constraint arises from
the necessary compatibility conditions between the velocity and the deformation gradient.  To our knowledge,
no other algorithm for elasto-visco-plasticity accurately enforces this constraint.

This presentation describes the foundations of this approach, including a motivation of the underlying
equations.  We explain how to develop a Flux Distribution algorithm for these equations.  As this approach is
new and novel, we do not yet have any numerical results to validate our claims.  This presentation comprises
the first installment in our program to develop this new method for computational solid dynamics.


