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It has been analytically proved that consideration of various physical processes, such 
as viscosity, dispersion, or kinetics of phase transitions, leads to different parameters 
of rarefaction shock waves emerging in materials having non-convex equations of 
state. One-dimensional simulations confirm these results. Hence, the problem of 
selecting a single and “correct” rarefaction shock wave should be solved at the level 
of physical model selection and depends on major physical processes to be ignored, 
when writing the ideal gas dynamics equations. 

Introduction 
Materials with abnormal thermodynamic properties rouse curiosity of researchers in gas 

dynamics, if Bethe-Weil conditions are violated, in particular, if adiabatic curve in plane (P,V) has 
non-convex sections.  In such cases, a compressed material unloading causes rarefaction shock 
waves (Zel’dovich and Raiser, 1963). For the sake of simplicity, let us not go beyond the barotropic 
equation of state in which pressure depends on the specific volume alone. Assume that the equation 
of state p=P0(v) is smooth enough, strictly monotonous and has only one section of “reverse” 
convexity  
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For any continuous monotonous initial profile p0(m)=p(t,m)|t=0, u0(m)=u(t,m)|t=0, 
p(t,m)|m=0=p−<pmin, p(t,m)|m=+∞=p+>pmax, which unloads leftwards, characteristics within the 
pressure range pmin<p<pmax will inevitably intersect after some time and this will lead to a 
rarefaction shock wave with parameters (p1,v1,u1)→(p2,v2,u2), where p2<p1, v2>v1, u2<u1. The 
rarefaction shock wave parameters in case of barotropic EOS meet two Renсkin-Hugoniot 
requirements and, hence, the mass velocity of the rarefaction shock wave is 
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All the profiles should approach with time the self-similar solution of the Riemann problem. The 
rarefaction shock wave (p1,v1)→(p2,v2) in the limit self-similar solution should meet the 
requirements 
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In plane (P,V),  the rarefaction shock wave (p1,v1)→(p2,v2) meeting Renckin-Hugoniot 
requirements is represented by Rayleigh-Michelson straight-line segment 
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Fig.1 shows examples of positions of Rayleigh-Michelson straight-line segment satisfying 
conditions 3 and 4. There is a self-similar solution for each rarefaction shock wave of such a type. 
To select a single solution from this variety, additional selection criteria are required. The 
requirement of an admissible shock wave is usually used, for the barotropic equation of state it has 
the following form: an impact transition  (p1,v1,u1)→(p2,v2,u2) is considered admissible, if there is a 
classic solution to the gas dynamic equation system for viscous gas with any positive coefficient of 
viscosity μ>0 that connects points (p1,v1,u1) and (p2,v2,u2). Such impact transition is said to be 
admissible by the vanishing viscosity method. 

Galin (1959) proved that the impact transition (p1,v1)→(p2,v2) in the form of a rarefaction shock 
wave is admissible, if adiabatic curve v=V0(p)is in plane (P,V) is above Rayleigh-Michelson straight 
line v=VRM(p). In the variety of cases in Fig.1 the criterion of admissibility by the vanishing 
viscosity method allows determining a single rarefaction shock wave which Rayleigh-Michelson  
straight-line segment is tangent to the adiabatic curve v=V(p) at both its end points (p1,v1) and 
(p2,v2). In so doing, there is no need in using the entropy requirement of Lax essential non-linearity 
(Lax, 1957) and the shock wave evolution requirement (Gelfand, 1959) to select the single solution. 
The requirement of shock wave admissibility is of a higher priority. 

Such definition of admissibility of a rarefaction shock wave is based on a common assumption 
that the major physical process to be omitted with the use of the ideal gas dynamics equations is 
viscosity. In this paper we consider other definitions of admissible rarefaction shock waves and 
show that parameters of rarefaction shock waves in the self-similar Riemann problem depends on 
the physical processes that determine the structure of smeared shock waves. 
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Figure 1 – Possible variants of positions of Rayleigh-Michelson straight-line segment 
v=VRM(p) for rarefaction shock wave (p1,v1)→(p2,v2) meeting the necessary requirements (3) 
and (4). The dotted line represents the single rarefaction shock wave admissible by the 
vanishing viscosity method. 

The Method of Vanishing Normal Dispersion and Rarefaction Shock Waves in 
the Self-Similar Riemann Problem  

Consider the small normal dispersion ( 0constη = > , η→+0) in 1D gas dynamics equations in 
Lagrangian variables  
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We say that the rarefaction shock wave (p1,v1,u1)→(p2,v2,u2) is admissible by normal dispersion 
(or admissible by the method of normal dispersion), if there is a classic solution to the system of gas 
dynamics equations 5 and 7 with normal dispersion and with any positive value of dispersion 
coefficient η>0 that connects points (p1,v1,u1) and (p2,v2,u2). 

Consider the structure of time-independent shock wave and determine conditions under which 
equations 6 and 7 have continuous solutions of the form 
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Substitute the solution in the form of a progressive wave (equation 8) into equations 6 and 7 and 
obtain upon velocity elimination that  
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where σ  –is the mass velocity of shock discontinuity propagation, equation 2. Equation 11 can be 
easily integrated and it can be easily checked that the integral curve connecting points (p1,v1) and 
(p2,v2) in plane (P,V) exists, if and only if function  
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is positive for all values of v within the range v1<v<v2 and vanishes at the end points of this range. 
Hence, we obtain the following (Bondarenko et al., 2003).  

Theorem 1. In the self-similar Riemann problem with non-convex equation of state there is a 
rarefaction shock wave admissible by the method of vanishing normal dispersion. This rarefaction 
shock wave is the single one uniquely determined by the following features. First, in plane (P,V) the 
segment of Rayleigh-Michelson straight line v=VRM(p) of the rarefaction shock wave (p1,v1)→(p2,v2) 
is tangent to the equation of state v=V0(p) at its end point (v1,p1) and, secondly, the Rayleigh-
Michelson straight line  intersects the adiabatic curve v=V0(p) at an intermediate point and at the 
end point (p2,v2), so that the integral in equation 12 for v=v2 equals zero. 

 
Figure 2 – The adiabatic curve with the non-convex equation of state and Rayleigh-Michelson 
straight lines  of the rarefaction shock wave admissible by the method of vanishing normal 
dispersion (p1→p2) and the method of vanishing viscosity (p1вязк→p2вязк).  

Such admissible solutions are sketched in Fig.2. At point (p1,v1) Rayleugh-Michelson straight 
line v=VRM(p) should be tangent to adiabatic curve v=V0(p) and the areas of two shaded curvilinear 
triangles  should be equal. The rarefaction shock wave obtained using the method of vanishing 
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normal dispersion always differs from that obtained using the method of vanishing viscosity. Event 
velocities of such rarefaction shock waves are always different.  

The Method of Artificial Interphase Kinetics and Rarefaction Shock Waves in 
the Self-Similar Riemann Problem 

Artificial interphase kinetics can be also used instead of viscosity and dispersion for smearing 
rarefaction shock waves. For this purpose, use the two-phase model similar to that described in the 
paper by Akhmodeyev et al. (1984), with natural generalizations and simplifications adopted in this 
paper. It is assumed that a material consists of two mixed phases with convex equations of state 
v=V1(p) and v=V2(p) for each of the pure phases, the equilibrium equation of state  

v=V0(p)≡Θ0(p)⋅V1(p)+(1−Θ0(p))⋅V2(p) [13] 

is strictly monotonous, however, it has one non-empty range of non-convexity, where Θ0(p) is a 
strictly monotonous equilibrium concentration of the first phase. Assume that requirement 1 and 
requirements 
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are met. In the artificial interphase kinetics method the non-equilibrium equation of state  

v=V(p,Θ)≡Θ⋅V1(p)+(1−Θ)⋅V2(p) [18] 

is used and the concentration Θ(t,m) of the first phase is described by the non-equilibrium equation 
of the phase transition kinetics  

( )0
d ( p ) ( , p )
dt
Θτ Θ Θ ω Θ= − − ⋅  [19] 

with positive time of phase relaxation τ=const→+0 and positive function ω(Θ,p) continuous over 
the set of arguments, which describes the dependence of the “rate” of interphase relaxation on 
pressure and phase concentrations. Viscosity and dispersion are not taken into consideration. 

Criteria of presence of rarefaction shock waves smeared by the artificial interphase kinetics 
and progressing with constant-velocities 

First, we study the issue of presence of smeared rarefaction shock waves progressing with 
constant velocities. For this purpose, the solution in the form of a progressive shock wave 8 is 
substituted into equations 20 and 21 of 1D Lagrangian gas dynamics  
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added by equation of state 18 and kinetic equation 19.  
Assume that gas behind the rarefaction shock wave is in idle state. Find continuous and 

continuously differentiated solutions of such a kind that they achieve constant values at infinity, i.e. 
satisfy edge conditions 9 and 10 at infinity and also satisfy the conditions below 

Θ(μ)→Θ1=Θ0(p1) при μ→+∞ [22] 

Θ(μ)→Θ2=Θ0(p2) при μ→−∞ [23] 
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As a result, we obtain the system of ordinary differential equations  
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Integration of equations 25 and 26 leads to 
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Use equation 28 to eliminate the first phase concentration from equation 27 and obtain one 
ordinary differential equation, namely 
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which can be pro forma (and quite easily) integrated in quadratures. The solution to equation 29 
must satisfy edge conditions 9 and 10 at infinity, the other edge conditions at infinity will be 
satisfied automatically. For existence of a monotonous solution satisfying the conditions above at 
infinity the inequality 
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must be valid.  
The following result can be easily proved. 

Conjecture. The rarefaction shock wave (p1,v1)→(p2,v2) smeared using the artificial interphase 
kinetics exists, if and only if the following conditions are satisfied simultaneously: 

(i) function 0

2 1

RMV ( p ) V ( p )( p )
V ( p ) V ( p )

ψ −
=

−
 is strictly positive for all values of p within the range 

p2<p<p1; 
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 is strictly positive for all values of p within the range 

p2<p<p1; 

(iii) function f(p)=ϑ'(p)/ψ(p) is continuous everywhere within the range p2<p<p1; 

(iv) function 1/f(p)→0 at p→p1−0; 

(v) function 1/f(p)→0 at p→p2+0.� 
Further analysis will be performed separately for two cases, when the equations of state of pure 

phases v=V1(p) and v=V2(p) do not intersect and  when they intersect at one point only. 

Extreme rarefaction shock waves in the method of artificial interphase kinetics in case of not 
intersected equations of state of pure phases.  

Consider a case of not intersecting equations of state of two pure phases, v=V1(p) and v=V2(p):  

2 1
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V ( p ) V ( p );
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>
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If the requirement 31 of not intersecting pure phases is met, the necessary requirement 30 
concerning the existence of the smeared rarefaction shock wave (p1,v1)→(p2,v2) becomes  

0 2RMV ( p ) V ( p ), p : p p p< ∀ <  [32] 

Theorem 2. Let the equations of state of two pure phases v=V1(p) and v=V2(p) be not intersected 
(i.e. the requirement 31 is met) and assumptions 1 and 14-17 are valid. Then, there is a rarefaction 
shock wave obtained using the method of artificial interphase kinetics. This is a single rarefaction 
wave , which is uniquely determined by the following feature. In plane (P,V) the Rayleigh-
Michelson straight-line segment  v=VRM(p) of the rarefaction shock wave (p1,v1)→(p2,v2) is tangent 
to the equilibrium equation of state v=V0(p) at its end points (v2,p2) and (v1,p1).� 

The paper by Bondarenko and Sofronov (2004) gives the complete proof of Theorems 2 and 3 (it 
is given below). 

The parameters of the rarefaction shock wave obtained using the method of artificial interphase 
kinetics are the same as the parameters of the rarefaction wave obtained for the equilibrium equation 
of state v=V0(p) with the method of vanishing viscosity. 
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Extreme rarefaction shock waves in the method of artificial interphase kinetics for intersected 
equations of state of pure phases. 

Now consider the method of artificial interphase kinetics for a case, when the equations of state 
of two pure phases, v=V1(p) and v=V2(p) intersect at a single point (p3,v3), p1>p3>p2 and assume that 
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Basing on the necessary condition (equation 30) of existence of the rarefaction shock wave 
(p1,v1)→(p2,v2) smeared by the artificial interphase kinetics and the condition (equation 33) of 
intersection of pure phases, we obtain the following necessary conditions for Rayleigh-Michelson 
straight-line segment positioning 
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It follows from this, in particular, that Rayleigh-Michelson straight line v=VRM(p) should pass 
through the point of intersection of pure phases, (p3,v3), that is . 3 3RMV ( p ) v=

Theorem 3. Let the equations of state of two pure phases v=V1(p) and v=V2(p) intersect at a 
single point (p3,v3) and the assumptions 1, 14÷17 and 33÷34 be valid. Then, there is a rarefaction 
shock wave obtained using the method of artificial interphase kinetics in the self-similar Riemann 
problem. This rarefaction shock wave is a single one and it is uniquely determined by the following 
feature. In plane (P,V) the Rayleigh-Michelson straight-line segment v=VRM(p) of the rarefaction 
shock wave (p1,v1)→(p2,v2) passes through the phase intersection point (p3,v3), is tangent (from 
below) to the equilibrium equation of state v=V0(p) at one of its end points, (v1,p1) and intersects 
(from above and with no contacts) the equilibrium equation of state at the second of its end points, 
(p2,v2).� 

In case of intersected equations of state of pure phases, the parameters of the rarefaction shock 
wave obtained using the method of artificial interphase kinetics significantly differ from that of the 
rarefaction wave obtained for the equilibrium equation of state v=V0(p) using the method of 
vanishing viscosity and method of vanishing dispersion. This statement will be proved by 
computation results.  

Results of 1D Computations for Self-Similar Riemann Problems With 
Rarefaction Shock Waves 

It is well known (Turkel, 1974) that errors of homogenous difference schemes of end-to end 
computations for 1D gas dynamics are the sum of approximation (and/or artificial) viscosity and 
approximation dispersion errors. In the absence of approximation dissipation (viscosity) in a 
difference scheme in computations without artificial viscosity, approximation dispersion of the 
second infinitesimal order will be a predominant mechanism of rarefaction shock wave smearing. 
With the use of linear artificial viscosity of the first infinitesimal order on rarefaction waves this 
viscosity suppresses the effect of approximation dispersion. In order to verify the statement, 1D gas 
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dynamic computations by UP program (Batalov et al., 1978) using the difference scheme “krest” 
(cross) with controllable dissipation were carried out. 

Problem 1 
Problem 1 considers a barotropic equation of state with piecewise analytical representation of 

the sound speed for each density range kk ρρρ <<−1  of the form k
kc b γρ= ⋅ , b1=4.0, b2=1.0, 

γ1=γ2=1.0. For such equation of state one can construct in quadratures a self-similar solution for a 
centered rarefaction wave. In general, the self-similar solution can consist of the following three 
types of solutions “glued together”: non-trivial self-similar solution, trivial solution (a flow of 
constant density, pressure, and mass velocity values) and impact discontinuity ( on which the known 
Hugoniot relations and requirements of discontinuity admissibility for various regularization ways 
are met).  

The time-independent self-similar pressure profile is shown in Fig.3. Thick lines show the 
results of analytical solution, thin lines represent the results of numerical computations. Thin lines 
are overlapped with thick lines almost everywhere. Small differences are observed only near strong 
and weak discontinuities. 
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Figure 3 – The pressure profiles for problem 1. Computations with viscosity (a) and dispersion 

(b). 

Problem 2. The mixture of two phases without intersection of state equations of pure phases 
Consider a nonequilibrium barotropic model of a two-phase medium. The equation of state of 

the form 2,1,)(0 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

== i
bP
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PV

in

i

i
i

iρ
ρ  (Table 1) is given for each pure phase. For the two-phase 

mixture, use the requirement of volume additivity )()1()( 21
0 PVPVV ⋅Θ−+⋅Θ==
ρ
ρ , where Θ is 

the mass concentration of the first phase. Assume that within the range of pressures 12 21p p p< <  
simultaneous phase transitions  and  are possible. There are no phase transitions outside 
this pressure range. The kinetic equation of the form  

21→ 12 →
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is taken. Here, τ  is the interphase relaxation time. The velocity of phase transitions  and 
 is determined by the functions  and  , which form was taken from the paper by 

Akhmadeyev et al. (1984): 
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Fig.3 shows the equations of state of pure phases and the equilibrium mixture of these phases. 
Table 1. EOS parameters for problems 2 and 3 

Nos. ρ0 a1 b1 n1 a2 b2 n2 p12 p21 Δ12 Δ21 τ 
4 7.85 6.9523 -6.9523 16 19.845 -23.824 6 12.1 18.6 3.2 3.2 0.04 
5 7.85 6.9523 -6.9523 16 0.2424 13.09027 25 13.8 15.45 1.2 1.15 0.04 
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Figure 3 – The two-phase EOS adiabatic curve for problem 2. 

The results of comparison between the calculated self-similar pressure profiles for the three 
regularization variants are shown in Fig.4. The extreme solutions obtained using the method of 
viscosity and the method of interphase relaxation are the same and differ from the solution with 
taking account of dispersion. The calculated parameters of rarefaction shock waves meet the 
requirements of admissibility of discontinuities for the three variants of gas dynamic equation 
regularization. 

Bondarenko, Yu.A. et al. 
 

10



Proceedings from the 5LC 2005 

-5

0

5

10

15

20

25

30

35

0.35 0.45 0.55 0.65 0.75 0.85 0.95 1.05

X/Cot
P

b

ca

 
Figure 4 – The pressure profile of the centered rarefaction wave for the equation of state 
without intersection of phases. Computations with viscosity (a), dispersion (b), and interphase 
relaxation (c). 

Problem 3. The mixture of two phases with intersection of EOSes of the pure phase. 
The EOS parameters for the variant with intersection of adiabatic curves of pure phase are given 

in Table 1. EOSes separately for each phase and the equilibrium EOS for the phase mixture are 
shown in Fig.5. It is clearly seen that the three equations of state intersect at one point. Fig.6 shows 
the results of comparison between the calculated self-similar pressure profiles of the rarefaction 
shock wave in plane for the three regularization variants. The results differ from the earlier 
presented ones in that each of the three regularization methods gives its own solution differing from 
the others and this agrees with the results of analytical studies.  

The calculated parameters of rarefaction shock waves in coordinates are shown in Fig.7. It 
follows that these parameters meet the requirement of admissibility of discontinuities for the three 
methods of regularization of gas dynamics equations. Note that for in case of intersection of phases 
an admissible (from viewpoint interphase relaxation) rarefaction shock wave must go across the 
point of intersection of phases in coordinates and be in contact (from below) with the 
equilibrium equation of state . The enlarged fragment in Fig.7 shows that the calculated 
shock wave meets the requirements above. 
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Figure 5 – The two-phase equation of state with intersection of phases for problem 3. 
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Figure 6 – The pressure profile in the centered rarefaction shock wave (problem 3) for the 
equation of state with intersection of phases. Computations with viscosity (a), dispersion (b), 
and interphase relaxation (c). 
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Figure 7 – The shock wave position in problem 3 computations with viscosity (a), dispersion 
(b, and interphase relaxation (c). 

Conclusions made basing on the computation results 
The resultant parameters of the rarefaction shock wave, in accordance with the results on the 

vanishing viscosity and vanishing dispersion methods, are determined by the relation between the 
approximation (or artificial) viscosity and approximation dispersion and, hence, depend on the 
difference scheme in use. The features of the vanishing dispersion method analytically proved in the 
paper and the features of the method of artificial interphase kinetics have been absolutely confirmed 
by 1D computations.  

Features of main approximation error control in modern difference gas dynamics schemes are 
sufficient to simulate the required combinations of dissipation and dispersion processes inside the 
smeared shock wave front. Such control is possible in difference schemes of a rather high 
approximation order, not worse than the second order of approximation. 

Conclusion 
The results on the features of rarefaction shock waves in self-similar problems of the Riemann 

problem type known from literary sources are based on assumption  that any discontinuous solutions 
to gas dynamics equations should be obtained from smooth solutions to gas dynamics equations 
with viscosity by transition to an infinitely small coefficient of viscosity , i.e. using the method of 
vanishing viscosity. 

The efforts described in the paper resulted in the analytically obtained features of rarefaction 
shock waves for non-convex barotropic equations of state (when pressure depends on the specific 
volume only) for the two methods of regularization of gas dynamic equations of state – using the 
method of artificial normal dispersion and the method of artificial interphase kinetics. 

It has been proved that the rarefaction shock waves obtained using the method of vanishing 
normal dispersion always differ from the rarefaction shock waves obtained using the method of 
vanishing viscosity. Even the velocities of such rarefaction shock waves obtained in self-similar 
Riemann problems are different. 

Bondarenko, Yu.A. et al. 
 

13

The paper describes the method of smearing rarefaction shock waves in which artificial 
interphase kinetics is used instead of viscosity and dispersion, in assumption that a material consists 
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of two mixed phases with convex equation of state of each of the pure phases. It has been proved 
that if the pure phase EOSes don’t intersect, the rarefaction shock waves obtained using the method 
of artificial interphase kinetics coincide with those obtained using the method of vanishing 
viscosity. 

If the pure phase EOSes intersect, the rarefaction shock waves obtained with the method of 
artificial interphase kinetics significantly differ from those obtained with the method of vanishing 
viscosity. 

The following should be emphasized here. As the obtained results show, various methods of 
extrapolation of the pure phase EOSes to the vicinity of phase transition and behind it (both with 
intersection of adiabatic curves of pure phases and without it) lead to absolutely different parameters 
of rarefaction shock waves with regard to the phase transition kinetics. Hence, such difference 
depending on a chosen model should be taken into account, when treating the experimentally 
obtained data, in particular, if there is an insufficient knowledge of the equations of state of pure 
phases in the phase transition area and if there some uncertainties of the phase transition kinetics 
parameters.  

The results obtained in the paper prove that parameters of rarefaction shock waves depend on 
the processes inside the smeared rarefaction shock wave front. The results allow a unequivocal 
conclusion that the problem of choosing a single and “correct” rarefaction shock wave during 
simulation (including numerical simulation) of gas dynamic processes should be solved at the level 
of selecting physical models and depends on the major physical processes to be ignored, when 
writing the ideal gas dynamics equations. This conclusion is not new, in general. The review paper 
by Kulikovsky (1988) gives many examples of such a kind.  
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