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ABSTRACT

We consider four asynchronous parallel algorithms for Implicit Monte Carlo (IMC) thermal
radiation transport on spatially decomposed meshes. Two of the algorithms are from the
production codes KULL from Lawrence Livermore National Laboratory and Milagro from Los
Alamos National Laboratory. Improved versions of each of the existing algorithms are also
presented. All algorithms were analyzed in an implementation of the KULL IMC package in
ALEGRA, a Sandia National Laboratory high energy density physics code. The improved
Milagro algorithm performed the best by scaling almost linearly out to 244 processors for well
load balanced problems.

KEYWORDS : Monte Carlo methods, parallel compuation, domain decomposition

1. INTRODUCTION

Monte Carlo simulations are embarrassingly parallel if you replicate the spatial domain on all
processors of a distributed memory computer. However, this is not an option for many
three-dimensional, coupled-physics problems because of computer memory constraints. In these
cases, the spatial domain must be partitioned among the processors. As particles move through
the system, they may hit a processor boundary and need to be moved to another processor.

Four different algorithms are outlined, and the performance of each is measured on two test
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problems. These algorithms are implemented in the KULL IMC package[1] running inside of
ALEGRA[2]. This package implements the Implicit Monte Carlo (IMC) scheme for thermal
radiation transport of Fleck and Cummings[3].

The IMC algorithm solves the time-dependent transport equation for photons coupled with
matter. The problem is meshed, with each zone in the mesh having an individual temperature.
Particles representing photons are created by thermal emission in the zones or by other external
photon sources and are tracked through the mesh. These particles deposit energy in each zone
they pass through, in an amount calculated from the absorption opacity of the material in the
zone. This deposition decreases the energy of the particle. Particles also execute scatters, if the
material in the zones has a non-zero scattering opacity. The location of the created particles, and
the scatters, are simulated using random numbers. Thus, the results of the algorithm have
statistical noise. Particles are terminated when they reach problem boundaries or their energy
reaches a small fraction, typically chosen to be 1%, of their initial energy. Particles which survive
until the end of the time step are retained and continue in the next time step. At the end of the
time step, the change in material energy is calculated by subtracting the energy radiated by
thermal emission and adding energy from absorption, and the new material temperatures are
calculated. This process is repeated on subsequent time steps until the end time of the simulation
is reached. The photon population is held constant in each time step by varying the energy
assigned to each photon. Energies for new photons in each time step are chosen so that the sum
of all of the photon energies equals the source energy plus the energy in photons from previous
time step. The only difference between serial and parallel implementations of the method is that
particles must be transfered across domain boundaries as they traverse the mesh. How to do this
efficiently is the subject of this paper.

ALEGRA supports fully unstructured two and three dimensional meshes with arbitrary spatial
decomposition. Figure 1 shows a sample mesh used by ALEGRA. Figure 1(a) is a sample
physical geometry with a cylinder of hot material radiating in the center of a rectangular box. The
spatial decomposition of the mesh is shown in Figure 1(b), where the mesh has been broken into
three regions, and each region is assigned to a different processor.

When a Monte Carlo simulation is run in a domain decomposed fashion, the result will not
necessarily be the same as when it is run on a single domain. This occurs for two reasons: first,
the random numbers used in the simulation will be different; second, the order in which events
occur will change. For example, the deposition of energy in a zone by one particle can occur
before the deposition by a second particle when the problem is run on one domain, but after when
it is run on two domains. This makes the sum of energy deposited different, since finite precision
floating-point addition is not commutative, for example(x+y)+z= x+(y+z) may not be true.
We eliminate the first problem by giving each particle a unique random number stream, so that it
uses the same random number stream on every domain. To solve the second, we tally energy
deposited into an integer data type, for which addition is commutative. This integer result is then
scaled to a floating point number at the end of the time step. As a result of this procedure, we
obtain identical results for our simulations on any number of domains. Details of this procedure
can be found in [1, 4].

The algorithms presented here only address the scalability for domain decomposed meshes that
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Figure 1. A sample two dimensional geometry specification used by ALEGRA. Here, a cylin-
der of hot radiating material is in the center of a rectangular box. The domain is divided
into three regions, each assigned to one processor.

have reasonable particle load balancing. If one processor has significantly more particles than the
others, all of the algorithms presented here will scale poorly. Two test problems will be used to
illustrate the scaling of the algorithms in the perfectly load balanced and mildly unload balanced
cases.

2. ALGORITHMS

In domain decomposed Monte Carlo, two sets of data must be communicated between the
processors. The nearest neighbors must exchange particles that cross processor boundaries
through shared faces. For example, Processor 7’s nearest neighbors in Figure 2 are Processor 3,
Processor 6, Processor 8, and Processor 11. A global communication operation must also be
performed so that all the processors know when all the other processors are finished moving all
the particles. The four algorithms for a time step in the IMC package vary in how they perform
each of these two tasks. Specific MPI calls in the algorithms are shown.

2.1. Algorithm I: KULL

Algorithm I shows the original communication method used by the KULL IMC package[1]. The
number of particles that need to be exchanged is not known, so this information must be sent
before allocating memory for the receive buffer. As for all algorithms, the list of neighbor
processors must only be gathered once per simulation; the mesh or its decomposition does not
change between time steps. It is critical to have a sorted list of the neighbors’ processor
identification numbers, otherwise it is possible to get locked cycles of processors, each waiting on
another to exchange particles. For the three processor decomposition shown in Figure 1(b), each
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get sorted list of neighbor processor ID numbers
while any active particles on any processor (MPI Allreduce )

for each local particle
move particle to a termination event
if particle hit processor boundary

buffer particle
for eachneighbor processor in list

if my id is less than the other’s id
send buffer size to neighbor (MPI Send)
send particles to neighbor (MPI Send)
receive buffer size from neighbor (MPI Recv )
allocate memory for incoming message
receive particles from neighbor (MPI Recv )

else
receive buffer size from neighbor (MPI Recv )
allocate memory for incoming message
receive particles from neighbor (MPI Recv )
send buffer size to neighbor (MPI Send)
send particles to neighbor (MPI Send)

Algorithm I. The KULL Algorithm

processor must exchange particles with the other two. The following scenario could occur with
unsorted lists of neighbors: Processor 1 expects to exchange particles with Processor 2 first, and
Processor 2 expects to exchange particles with Processor 3 first, and finally Processor 3 expects
to communicate with Processor 1 first. In this case, each of the processors will be waiting
indefinitely for the others to begin communication. If each processor orders its communication
by processor number, Processor 1 communicates with Processor 2 first, and processor 2
communicates with Processor 1 first, thus eliminating the lock.

Even though each processor needs to talk with only its neighbors, this algorithm can have a serial
communication pattern in certain circumstances. For example, if you had a square problem
domain cut into sixteen sub-domains, as shown if Figure 2, it takes twelve steps to communicate
all the data. In general for square problems like this, it takes 4(

√
p−1) steps, wherep is the

number of processors. It should take only four steps since each processor has at most four
neighbors. This serialization is due to the fact that each processor talks with each of its neighbors
one after another, in a specific order. Even if another neighbor is ready to communicate, a
processor will wait for the next one in its list.

2.2. Algorithm II: Improved KULL

The blocking sends and receives in Algorithm I lead to non-scalable behavior, like the
serialization in the example above. Algorithm II is an improved version of Algorithm I that uses
nonblocking communication and combines the buffer size with each buffer, which eliminates a
separate message. The nonblocking communication improves the algorithm in two respects.
First, the serialization of Algorithm I is eliminated. Additionally, processors are free to
communicate with the neighbors that are also ready to communicate, which helps performance
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Figure 2. Communication pattern for the KULL IMC algorithm for a square spatial domain
distributed on sixteen processors. It takes twelve communication steps to fully exchange all
particles when it should only take four steps.

get list of neighbor processors ID numbers
while any active particles on any processor (MPI Allreduce )

for each local particle
move particle to a termination event
if particle hit processor boundary

buffer particle
for eachneighbor processor in list

initiate nonblocking send of particles to neighbor (MPI Isend )
while any unreceived particle buffer messages from neighbors

for eachneighbor processor in list
if incoming message from neighbor (MPI Iprobe )

get incoming message size (MPI Get count )
allocate memory for incoming buffer
receive particles from neighbor (MPI Recv )

wait until all nonblocking sends of particles have completed (MPI Waitall )

Algorithm II. The improved KULL algorithm.

when particles are not load balanced. If, for example, in Figure 2, Processor 2 had twice the
number of particles of either Processor 1 or Processor 5, then Processor 1 and Processor 5 could
exchange particles before Processor 2 finish, allowing for the overlap of work and computations.
In Algorithm I, Processor 1 and Processor 5 must wait until Processor 2 has finished its
computations as well as communicating with Processor 1.
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Figure 3. The fat tree communication pattern used in Algorithm III with ten processors.
Processor 0 is the master processor, and all others are slaves. All processors perform particle
calculations.

2.3. Algorithm III: Milagro

An algorithm based on the Milagro code[5–7] is outlined in Algorithm III. For particle transport
on a spatially decomposed domain, each processor continuously loops over mutually exclusive
options until every particle in the entire domain finishes.

After simulating each particle, the communicator is checked to see if any particles have arrived
from neighboring domains on other processors. This frequent checking was necessary in the
original implementation in Milagro on the SGI Octane “Bluemountain” supercomputer (now
decommissioned) at Los Alamos National Laboratory. Skipping even a small number of checks
would occasionally lock the processors on that machine.

If incoming particles have arrived, they are put into the active particle list in a last-in, first-out
manner. During transport, particles that leave the processor’s domain are buffered and eventually
sent to the appropriate processors.

When a processor has no more local particles or incoming particles, it deliberately flushes its
buffers, sending only the number of bytes needed to transfer the partially full buffer. The number
of particles that are being sent is encoded into the beginning of the message buffer and extracted
when the buffer is received.

At the beginning of a time step, a master processor, typically Processor 0, gets a total number of
global particles that must be simulated over the course of the time step. When there appears to be
no more incoming particles, each slave processor sends a message to the master processor
indicating how many slave-local particles have been completed since the last such message.
Figure 3 shows the communication pattern between the master and slave processors. The master
processor occasionally checks for these incoming messages, and adds the incoming slave particle
completed counts to its own. Once the master determines that all global particles have been
completed, it broadcasts the finished status message to all slave processors. The master processor
and all the slave processors perform particle calculations; the master processor has the additional
work load of tallying the global number of particles completed. This extra work does impact the
scalability, which will be discussed in Section 3.
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get list of neighbor processor ID numbers
for eachneighbor

post nonblocking receive for maximum buffer size (MPI Irecv )
if master processor

post nonblocking receives for particles completed from all slaves (MPI Irecv )
elseslave processor

post nonblocking receive for finished message from master (MPI Irecv )
sum to master total global number of particles (MPI Reduce )
while global finished flag is not set

if any local particles
move the last particle in the list to a termination event
if particle hit processor boundary

buffer particle
if buffer full

send particle buffer to neighbor (MPI Send)
else

increment local particles completed counter
for each incoming particle buffer (MPI Test )

unpack number of incoming particles from buffer
process particles, adding to end of list
repost nonblocking receive (MPI Irecv )

if no active local particles
send any partially full particle buffers (MPI Send)
if master processor

for eachcompleted particle count message from slaves (MPI Test )
add to local number of particles completed
repost nonblocking receive for particles completed (MPI Irecv )

if all global particles are completed
set global finished flag
for eachslave

send global finished message to slave(MPI Send)
elseslave processor

send number of local particles completed to master(MPI Send)
reset local particles completed to zero
if global finished message from master (MPI Test )

set global finished flag
cancel all outstanding nonblocking receives

Algorithm III. The Milagro algorithm

2.4. Algorithm IV: Improved Milagro

Identifying the deficiencies in the Milagro algorithm, we may propose an improved algorithm.
The improved version of the Milagro algorithm is shown in Algorithm IV.

While the Milagro algorithm avoids any global synchronizations during the time step, its
scalability is limited in three key areas. The Milagro algorithm uses a fat communication tree for
the “particles completed” messages, where Processor 0 is the master of all other nodes. The
master processor checks for many “particles completed” messages, which causes a load
imbalance and poor scaling. The improved Algorithm III uses a binary tree communication
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get list of neighbor processors
for eachneighbor

post nonblocking receive for maximum buffer size (MPI Irecv )
calculate parent and children processor ID numbers
for eachchild

post nonblocking receive for particles completed (MPI Irecv )
post nonblocking receive for global finished message from parent (MPI Irecv )
sum to root processor total number of particles (MPI Reduce )
while global finished flag is not set

if any local particles
move the last particle in the list to a termination event
if particle hit processor boundary

buffer particle
if buffer is full

send particle buffer to neighbor (MPI Send)
else

increment local particles completed counter
for everyN particlesor if no active local particles

for each incoming particle buffer (MPI Testsome )
unpack number of incoming particles from buffer
process particles, adding to end of list
repost nonblocking receive (MPI Irecv )

for eachcompleted particle message from children (MPI Testsome )
add to local number of particles completed
repost nonblocking receive for particles completed (MPI Irecv )

if no active local particles
send any partially full particle buffers (MPI Send)
send number of particles completed to parent(MPI Send)
if root processor

if all particles completed
set global finished flag

else
reset local particles completed to zero
if global finished message from parent (MPI Test )

set global finished flag
for eachchild

send global finished message to child (MPI Send)
cancel all outstanding nonblocking receives

Algorithm IV. The improved Milagro Algorithm

pattern[8], which is optimal for short messages[9], for the asynchronous “particles completed”
communications and the finished message broadcast. Each processor has exactly one parent,
except for Processor 0, which is the root of the tree. Each processor has up to two children as
well. For example, in Figure 4, Processor 4’s parent is Processor 1, and Processor 4’s children are
Processors 9 and 10. This communications pattern ensures that each processor has an even and
minimal workload for incoming message tests. Each processor checks for the number of particles
completed messages from its children, and then forward that count it its parent. The root
processor, Processor 0, plays the same roll as the master processor in Algorithm III, namely it
knows the global number of particles that need to be processed and keeps the tally of the global
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Figure 4. Binary tree communication pattern used in Algorithm IV with twenty processors.
Each processor has one parent, except for Processor 0, which is the root of the tree. Each
processor also has at most two children. All processors perform particle calculations.

number of particles that have been completed so far. Once the root has determined that all
particles on the entire mesh have been finished, the finished flag is broadcast up the tree in the
reverse manner. Each processor waits for the finished message from its parent, exits the particle
processing loop, and then forwards the finished message onto its children.

The improved algorithm also eliminates the frequent checking for incoming messages. The
message queue is only checked afterN particles have been simulated, allowing for greater
scalability than the (machine) limitedN = 1 case of the Milagro algorithm.

We also found a performance increase in the checks for incoming messages by making one call to
(MPI Testsome ) instead of looping over MPI requests and making multiple calls to
(MPI Test ).

3. PERFORMANCE RESULTS

The four algorithms have been tested on two problems in a constant work scaling study. The first
is a perfectly load balanced problem and the second is a mildly load-imbalanced problem.

All timings include only the particle transport section of the code and do not include things such
as input, output, or startup costs. The simulations were run on a Linux cluster with dual 3.05 GHz
Pentium Xeon nodes and Myrinet interconnects between the nodes. For all except the
one-processor runs, both processors on a compute node were used. In all the results, there is a
drop in efficiency from one to two processors mainly due to the fact that the memory bandwidth
is shared between the processors.

Only the parallel communication section of the code was modified for each of the algorithms; the
physics routines remained the same. The code has been designed to get identical results on
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varying numbers of processors[4, 7], which has the consequence that the particles can be
simulated in order. Because of this feature of the original KULL IMC package, all results from
all algorithms on any number of processors are identical.

Each simulation was run a number of times, and the average run time computed for each case
using

t =
1
N

N

∑
i=1

ti , (1)

whereti is the time from a given run, andN is the total number of runs. The estimated error in the
mean[10] is computed using

σt =

√
1

N(N−1)

N

∑
i=1

(ti − t)2 (2)

The parallel efficiency for an algorithm, for a given number of processors, is computed using

εp =
tbest serial

pt p
, (3)

wherep is the number of processors,t p is the average time, andtbest serialis the average time from
the best serial algorithm. In practice, all four algorithms had very similar serial run times for both
problems. Because the errors in the run times are all independent, we can estimate the error in the
efficiency by adding the errors of the run times from Equation 3 in quadrature[10], namely

σεp = εp

√(
σtbest serial

tbest serial

)2

+
(σt p

t p

)2

(4)

The error bars on the figures are computed using this prescription.

3.1. A Hot Box

This problem is a cube with one centimeter long sides and is discretized with sixty zones per side
for a total of 216,000 zones in the mesh. All boundaries are reflecting. The box is filled with a
uniform, hot material atT = 1.1604505×107 K (1 keV), with an absorption cross section of
σa = 5000 m−1, with a scattering cross section ofσs = 1000 m−1, with a density of
ρ = 1000 kg/m3, and a heat capacity ofCv = 5×109 J/K kg. Twenty time steps were computed,
each with a constant size of∆t = 3×10−9 sec. With these parameters, the effective scattering
cross section of the Fleck and Cummings method is approximatelyσeff = 6000 m−1. This is
designed to be perfectly load balanced during the entire simulation, and each of zones in the
mesh is one mean free path thick.

3.1.1. Buffer Size and Message Check Frequency

The message check period,N in Algorithm IV, and maximum buffer size were varied to find the
best values for the remainder of the tests. Sixty four processors were used to simulate 69,120,000
particles. Table V shows the run time as a function of buffer size and the message check period
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Message check period (particles)
Buffer size (particles) 1 2 10 100 1000

10 536.7 495.2 463.0

100 498.7 450.2 424.4 409.1

1000 488.1 437.3 405.0 400.6 440.1

5000 484.6 432.7 405.4 395.4 399.1

Algorithm V. Run time in seconds as a function of buffer size and message check period with
the Algorithm IV on a sixty four processor hot box problem.

N. Generally the bigger the buffer and the longer time between checking for incoming messages
the higher the parallel efficiency and the lower the run time. With bigger buffers, fewer messages
need to be sent. Longer check periods also means less work done to support the parallel
algorithm. However, if the buffer is too big, the processors can run out of memory, and the
problem will fail to run. Additionally, if messages are not checked frequently enough, the run
times can increase by orders of magnitudes since processors will be waiting on each other to
receive messages. In certain circumstances, typically where the message check period was equal
to or greater than the buffer size, we’ve noticed a locking of the processors. Buffer size and
message check period are likely to depend on both machine and problem. We chose a buffer size
of 5000 particles and a message check period of 100 particles for the remainder of the tests in the
Algorithm IV.

3.1.2. Constant Work Scaling

Figure 5 shows the constant work efficiency of the four algorithms with four million particles per
time step. The same physical mesh was decomposed into roughly cubic chunks, one for each
processor; the same problem was run on an increasing number of processors. Each case was run
ten times. Algorithm I and Algorithm III do not scale well, each for a different reason.
Algorithm I has a serialized communication pattern, as discussed in Section 2.1. In Algorithm III
the master processor spends a lot of time checking for messages from all other processors. This
leads to a significant load imbalance as the number of processors is increased. Algorithm II
scales very well, but suffers slightly, when compared to Algorithm IV, from the multiple global
communications within each time step. Algorithm IV scales very well to 244 processors. In fact,
the biggest performance decrease happened between one and two processors and is more a result
of machine architecture than of the algorithm behavior.

3.2. A Vacuum Box

This is the same mesh as the hot box problem, but there is no material in the mesh. It is initially
cold, with a uniform isotropic source ofT = 3.5×105 K on one side. Initially the load balance is
not good, but by the end of the time step, the box is uniformly filled with particles. Only one time
step of∆t = 3×10−9 sec was run.

Figure 6 shows the efficiency results from a constant work study using one million particles.
Three runs for each case were used to compute the average run times and efficiencies. The
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Figure 5. The average parallel efficiencyε, defined in Equation 3, for the constant work hot
box problem. Ten runs were computed with each case. The error bars are computed using
Equation 4.

efficiency actually improves for this problem as the number of processors increases. As the
number of processors is increased, particles traverse the mesh on each processor more quickly,
and must be transfered to other processors more often. Particles get transfered to more processors
sooner, so the work can be more evenly shared. In the extreme case of two processors for
Algorithm I and Algorithm II, Processor 1 must move all the particles from the source boundary
to the sub domain boundary while Processor 2 waits to receive some particles. Once Processor 1
is finished, it sends the particles to Processor 2, which then moves the particles to completion
while Processor 1 sits idle, resulting in a 50% parallel efficiency. The other two algorithms,
Algorithm III and Algorithm IV, do not suffer from this problem as severely because they
exchange particle buffers more frequently. Similar things have been noticed before in discrete
ordinates simulations, where decomposing a three dimensional mesh into two dimensional
columns can dramatically improve performance[11] because information can be exchanged more
often allowing otherwise idle processors to do work.

4. CONCLUSIONS

Two production algorithms for asynchronous parallel Implicit Monte Carlo radiation transport
were analyzed and then improved. The improved version of the Milagro algorithm, Algorithm IV,
performed the best by scaling almost linearly out to 244 processors on a Linux cluster for load
balanced problems. The improvements were to check for messages less frequently and to use a
scalable, nonblocking version of the standard reduce and broadcast functions. It is critical not to
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Figure 6. The average parallel efficiencyε, defined in Equation 3, for the constant work vac-
uum box problem. Three runs were computed with each case. The error bars are computed
using Equation 4.

have one processor do more work than the others, even if it seems like it is a trivial amount of
work, such as checking for incoming messages. The algorithms that used blocking
communication do not perform well due to unnecessary contention for processor time.

All of these algorithms begin to suffer when the computational work is not balanced well
between processors, as in the vacuum box problem. Load imbalance generally presents the
largest obstacle to achieving good scaling in real applications. While this obstacle has not been
addressed by these algorithms, achieving good parallel scaling characteristics for load balanced
problems is critical for any algorithm that attempts to address the load imbalanced problem.
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