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The paper discusses technique RAMZES-KP designed for computing 
spatial multi-component heat-conducting flows in Eulerian-Lagrangian 
coordinates on parallel distributed-memory computer systems. 

 
Introduction 

Technique RAMZES-KP /1/ is designed for computing multi-component heat-

conducting flows in Eulerian-Lagrangian coordinates on parallel distributed-memory 

computer systems.  

The technique is based on the following principles: 

• using the gas dynamics equations and heat conduction equation written both in the 

Cartesian and curvilinear coordinate systems, in Eulerian-Lagrangian variables; 

• using the finite difference approximation in time both to the heat conduction 

equation and the gas dynamics equations; 

• splitting into physical processes; 

• partition of the problem geometry to fragments, in each of which its most 

appropriate grid is constructed; 

• the resultant system of multidimensional finite difference equations is solved 

using the splitting into directions and the direct method for solution of finite 

difference equation subsystem on block-matrix type grids, i.e. the integrated 

sweep method, which has been developed by the authors; 
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• the method of concentrations and Yangs method are used for construction of 

interfaces in the computations of material flows from mixed cells. 

Also, a feature of the technique is that parallel computations are employed at all 

phases (preprocessing, computation, and analysis of results) of the task run on the multi-

processor distributed-memory computer.  

Governing equations and the method for their solution  

The technique RAMZES-KP solves the following gas-dynamics equation system for 

multi-component medium: 
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Here N is the amount of materials in the mixture. To close the equation system, 

additional assumptions of the materials in the mixture should be involved.  
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If equal pressures of the components are assumed, the volume concentrations and 

pressures should be changed according to the condition of equal pressures of the 

components: 

( ) ( )( )iiiiiPP ξεξρ ,=  

For multi-component medium the heat conduction equation system is solved in the 

following form: 
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To close the system, additional assumptions of the materials in the mixture should be 

involved. 
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Here:  
d
dt

  is the total time derivative, 

ρ is the cell density, 

ρi    is density of components in the mixed cell, 

P  is the cell pressure, 

U U u v w
_ _

( , , )=   is the mass velocity vector, 

ε is specific internal energy, 

εi  is specific internal energy of components in the mixed cell, 

T is the cell temperature, 

χ is the cell heat conductivity factor, 

χi = Λi*Шi is the heat conductivity factor of components in the mixed cell, 

ξi  is the volume concentration of components in the mixed cell, 

ηi  is the mass concentration of components in the mixed cell, 

Фi = 
T

i

∂
∂ε

. 

The specific form of differential operators div and grad depends on the coordinate 

system, which the mass velocity vector decomposition is performed in. 
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)
The technique RAMZES-KP employs the curvilinear coordinate system 

( ϕ,, Sr  including, as a special case, the spherical, cylindrical and toroidal coordinate 

systems (see Fig. 1). 

 

 

 Fig. 1- Curvilinear coordinate system 
The relation between the Cartesian and curvilinear coordinates is given as 
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Coordinates S and ϕ are Eulerian and coordinate r is originally Lagrangian, but 

automatically, by some criteria, there can be a local refusal of the Lagrangian feature 

irrespective of the computation execution, that is the radial coordinate r is movable, with 

the law of its motion being able to vary in a wide range from the Lagrangian to the 

Eulerian.  

The problem discretization is of a two-level nature: depending on the problem 

geometry the whole geometry can be partitioned into fragments, each of which is 

described in its most suitable coordinate system ( )ϕ,, Sr  given using a reference line. 
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The computational curvilinear grid is produced by intersection of surfaces S=const, 

ϕ=const, and r=const, where the family r=const typically includes interfaces of physical 

regions, with the family ϕ=const being unique for all the problem fragments and S=const 

being its own in each fragment. Thus, the computational grid is composed of curvilinear 

cells with faces S=const, ϕ=const, and r=const (Fig. 2) and, structurally, the grid is of the 

block-matrix form, with each block of the matrix corresponding to one of the problem 

fragments. 

 

Fig. 2   - Centering of quantities 

The spatial finite difference approximation to differential operators is performed 

on these block-matrix grids with account for centering of thermodynamic ( PT ,,, ερ ) 

and cinematic ( Ur , ) quantities as shown in Fig. 2.  

 In time, the implicit finite difference approximation both to the heat conduction 

equation and the gas-dynamic equations is used. 

 The resultant system of the multidimensional finite difference equations is solved 

using a method of splitting into directions. The method reduces the solution of the 

general linear algebraic equation system to a sequential solution of subsystems of these 

equations along each spatial direction. As the computational grids along each direction 
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are not purely Lagrangian (they are Eulerian along directions S and ϕ and movable along 

direction r), the solution reduces to two stages: Lagrangian and Eulerian.  

For the Lagrangian stage, the structure of the matrix of these equation subsystems 

is either tridiagonal or close to tridiagonal. The solution of these equation subsystems is 

sought with the sweep method.  

The Eulerian stage has been implemented in programs of interpolation of the grid 

along radius through superposition of the grids (before and after the interpolation), while 

in the computation of the non-Lagrangian motion of the grid along the radial direction 

and Eulerian directions S and ϕ the donor scheme of the first-order flow approximation is 

used. The mixture component flows from mixed cells are calculated with Yangs method 

/2/. 

Parallel computations 

A characteristic feature of the technique is using parallel computations at all stages 
(preprocessing, computation, and computed data analysis) of the problem run on the 
multi-processor distributed-memory computer. 

The features of the parallelization methods are the following: 

• the method should allow the problem solution on any number of processors, from 
1 to P, where P is an arbitrary number in the general case; 

• each processor stores data only on those points, which are being processed on this 
processor; 

• the methods should allow arithmetic and communication operations at a time 

(given appropriate hardware on the computer); 

• independence of the computation results on the number of the processors used. 

For the gas dynamics and heat conduction problems it seems most natural to use 

the principle of geometrical parallelism in the problem solution domain decomposition 

over processors. The technique implements the capability of the problem partition into 

computational domains with subsequent decomposition of each computational domain to 

parallelepipeds in indexed space. Thus, the interprocessor communication proceeds both 

between and inside the domains. Three principal types of message passing between 
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processors have been developed that are used both in gas dynamics and heat conduction, 

i.e. parallel-pipeline method, communication of edges, communication between domains.  

When developing the parallelization methods, timestep-invariable decomposition of 

the data matrix to submatrices was used. Alongside its merits, for example, locality of 

most communications, the method has its difficulties relating to arrangement of the 

parallel execution of a large amount of recurrent formulas of the sweep on the processor 

line. To overcome this difficulty, our own version of the parallel-pipeline method has 

been developed. The principal idea of the algorithm is that, having calculated sweep 

factors for the i–th channel and transmitted them to the line-next processor, each 

processor transfers to processing of the other channels. As the backward sweep arrives 

the processor interrupts its operation in the forward sweep computation and calculates the 

solution for the i–th channel. To optimize the communication operations, the sweep 

factors are passed between processors when a portion of the channels has been processed. 

The number of the channels in one portion is variable (from 1 to the total number of the 

channels) and changes automatically from step to step by the criterion of step 

computation time minimization. If the arithmetic and communication operations are 

executed by different devices, then the arithmetic and communication operations can be 

made concurrent. Fig. 3 shows several phases of the parallel-pipeline method for a line of 

four processors. 

  t1                    t2                    t3                    t4                    t5

P 1

P 2

P 3

P 4

 

Fig. 3 – Several phases of the parallel-pipeline method 

The parallelization methods developed provide an acceptable efficiency (50-60% 

with the step calculation time of the order of a few seconds, with a longer step time the 

efficiency being up to 60-80%) on the modern multiprocessor computers. 
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The Modern Directions of the Technique Development 
The parallel computations revealed the problem of the crash feature of the 

technique. Whereas in the one-processor mode the crash was once in 24 hours, in the 

parallel mode that time was seconds when computing on several tens of processors. The 

reasons for the crashes have been analyzed and two principal directions of the refinement 

of the technique have been selected to reduce its crash feature: 

- using combined grids, 

- local refusal of the Lagrangian feature in the computation on the Eulerian-

Lagrangian meshes.  

Below is the brief description of the works on each of these directions.  

Either moving (Lagrangian) or unmoving (Eulerian) regular computational grids 

can be used for the gas dynamics problem solution.  

Even in computation of one 2D difference grid direction the Lagrangian 
approximation makes the computation cost-efficient in terms of the number of needed 
grid nodes and computation amount; the computation results are highly accurate; material 
interfaces are tracked automatically. However, when using moving grids, there can be 
cell overlaps leading to crashes; and in computations of severe vortex flows the 
requirement of simple connectivity of the region calculated on the regular grid can be 
violated. 

The Eulerian computational grids are free of these moving grid related 

disadvantages, but exhibit a number of special features. The principal special feature is 

the need for tracking material interfaces not connected to the grid. Besides, when using 

the Lagrangian grid, the region under consideration is always approximated by the same 

number of the grid nodes and, hence, the initial accuracy of the approximation is such in 

the complete computation as well. In the case of the Eulerian grids the approximation 

accuracy depends on the grid spacing, for the results to be accurate enough the number of 

the cells should be fairly large (be higher by several times than the number of the 

Lagrangian grid cells). 

Clear that neither purely Lagrangian nor purely Eulerian computation method is 
ideally suitable for many problems, while the best computational method can be some 
combination of the Eulerian and Lagrangian approximations.   
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Experience suggests that in most problems the computational domain can be 
divided into subdomains, so that for large time intervals each subdomain be best 
approximated by the moving and unmoving grids. The idea to use the combination of the 
Eulerian and Lagrangian approximation was proposed by V.F. Noh in 1964 /3/. We 
employ orthogonal rectangular Eulerian grids and moving regular Eulerian-Lagrangian 
meshes. We term the computation using these grids as the computation on combined 
grids. Unmoving orthogonal cylindrical grids are used either in those parts of the 
problem, where by virtue of geometry and (or) irregular nature of gas-dynamic flows the 
regular moving computational grid is hard to construct and maintain during the numerical 
solution of the problem or in those parts of the problem, where the moving grids have a 
singularity, for example, a center. 

Consider the algorithms of the computation on combined grids by the example of 

the problem of strong explosion /4/. At the initial time in a region of radius 1 density of 

100 and specific internal energy of 1000 are given; outside the sphere of radius 1 density 

is 1 and specific internal energy is 0.001. The equation of state in each region is ideal gas. 

A diverging shock wave is produced in medium under the action of pressure gradient.  

The internal region will be approximated by the moving Lagrangian spherical 

grid (fragment No.1), the external region by the unmoving cylindrical Eulerian mesh 

(fragment No.2) (Fig. 4).  
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At the task start the volume of Lagrangian material (the material from the 

Lagrangian grid) is estimated by recalculation for each Eulerian mesh cell. The Eulerian 

grid cells are distributed over groups (Fig. 5): 

 
Fig. 5 –Eulerian grid cell distribution over groups 

1. Calculated cell (light-blue). It is filled completely with the Eulerian material. 

2. Near-boundary calculated cell (blue). It is also filled completely with the Eulerian 

material and is a neighbor of the boundary cell. 

3. Boundary cell (brown). It is a mixed cell that contains two materials or is filled 

completely with the Eulerian material, borders on the pure cell filled with the 

Lagrangian material. 

4. Near-boundary non-calculated cell (red). It is filled completely with the Lagrangian 

material and is a neighbor of the boundary cell. 

5. Non-calculated cell (green). It is filled completely with the Lagrangian material, is 

not involved in the computations. 

Thus, the moving boundary in the Eulerian fragment is described by a continuous 

boundary cell layer (tangency through the cell angle is possible) surrounded with layers 

of near-boundary calculated and non-calculated cells (here the tangencies are possible 

only through cell edges). 

This distribution is calculated once at the start by recalculation over all Eulerian 

grid cells. During the computation the recalculations are performed only over the 

boundary and near-boundary cells, the cells can transfer from one type to another, with 

the layered structure of the layers being maintained additionally (the continuous layer of 
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the boundary cells is surrounded with the layers of the calculated and non-calculated 

cells). 

When developing the algorithms for communication of boundary conditions 

between the moving and unmoving fragments, it was taken into consideration that the 

boundary condition passing should be before the step computation; the fragments should 

be computed by standard computer programs independently. Later it will allow using 

multi-processor distributed-memory computers for the computation on the combined 

grids. 

In the first version of the fragment communication algorithm, pressures and 

velocities are passed from the Lagrangian fragment to the Eulerian fragment using the 

grid superposition by the beam-scanning method, with the moving boundary of the 

Lagrangian fragment, which is projected onto the Eulerian fragment, being the material 

interface. Flow of the materials through the boundary is impossible. The recalculation is 

performed for the boundary and near-boundary cells of the Eulerian fragment. All other 

needed components, i.e. density, energy, temperature, pressure, and two momentum 

components, are also recalculated in computing the Lagrangian material volume in the 

Eulerian grid cell. These quantities are entered into the relevant Eulerian grid arrays. The 

recalculated Lagrangian material momentum components are used to update the velocity 

components on the Eulerian mesh. This is done at the beginning of each timestep. After 

that the gas-dynamic process is calculated with a standard program. When calculating the 

new pressure field, the calculability scale is used extensively: for the non-calculated and 

near-boundary non-calculated cells the values of the calculability parameter are negative, 

which means that the sweep factors and new pressures are not calculated; the pressure 

proves imposed from the Lagrangian fragment. For all the Eulerian-material cells 

(calculated, near-boundary calculated and boundary cells) the complete gas dynamics 

computation is performed. 

In the first version of the fragment communication algorithm, pressure is imposed 

on the Lagrangian fragment boundary from the Eulerian fragment. This is done as 

follows (Fig. 3). The Lagrangian boundary is represented as a broken line, pressure 

should be imposed on each segment of the line. Intersections of the broken line with all 

Eulerian grid boundary cells are sought. The cell contribution is determined by the length 
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of the intersection straight-line segment and then the desired pressure is sought by 

averaging. For example (Fig. 4), for straight-line segment AB: 

AB
EBPDEPCDPACPP *4*3*2*1 +++

= . Material pressure of the Eulerian 

component is taken for the cell pressures. 

P1 P2

P3 P4 P5

A

B

C

D
E

 
Fig. 6 – Determination of pressures imposed on the Lagrangian fragment 

In the second version, a modified scheme of the boundary condition passing has 

been suggested, when the Lagrangian fragment contains a layer of dummy cells, in which 

the grid quantities will be computed by recalculation from the Eulerian grid. The 

following algorithm, which is simpler in implementation, has been proposed and tried: 

• In the Eulerian-Lagrangian fragment, add a dummy domain covering the 

computational cells of the Eulerian grid. In that domain EOS corresponds to 

EOS of the Eulerian grid material. 

• Impose velocity determined by interpolation over the Eulerian fragment cells 

on the boundary of the dummy domain. 

• The scheme of the passing of pressures and velocities to the Eulerian fragment 

remains unchanged. 

Results of the problem computation. 

Fig. 7 presents the grid at the initial time. Fig. 8 shows the problem state at one of the 

times. 
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Fig. 7 - The computational grid at the initial time 

 

 
Fig. 8 – The computational grid at time 1.5 

Presently the algorithms for communications between moving and unmoving 

fragments of the combined meshes are being improved further.  

Originally, in the technique RAMZES-KP the radial direction was purely 

Lagrangian, which led to severe distortions of the computational grid in problems 

involving heavy distortions of physical region interfaces. So, to reduce crashes of the 

technique, algorithms for local refusal of the Lagrangian feature in the radial family of 

the computational grid have been developed and implemented into software. These 

algorithms maintain the problem grid in a state acceptable for the computation by 

meeting the grid quality criteria. Besides, if the crash does occur, then the timestep is 

recomputed with making the timestep shorter.  
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 Using these algorithms has made the code significantly more crash-free/hand-off 

(in some cases up to one-run computation), with the accuracy being not deteriorated. This 

crash-free/hand-off technology has made 2D convergence computations of some 

problems feasible. 

Conclusion 
The paper has discussed the technique RAMZES-KP designed for computing 

multi-component heat-conducting flows in Eulerian-Lagrangian coordinates on parallel 

distributed-memory computer systems. Also, the modern directions of further 

development of the technique are presented.  
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