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We explored effectiveness of traditional “β” and modified “β” transport 
synthetic accelerations (TSA) as preconditioners for a parallel, inexact 
block-Jacobi algorithm for optically thin problems of Richardson iteration 
and GMRES iterative solvers. We observed that restarted GMRES 
stagnates when the restart value is less than the number of processors for 
thin problems. However, with TSA as a preconditioner, restarted GMRES 
with the restart value less than the number of processors does not 
stagnate. We observed that the modified TSA is not only effective, but 
more efficient than source iteration for large number of processors. 

Introduction    
Previously, we reported on the effectiveness of Krylov iterative methods for solving 

the spatially-decomposed SN equations using a parallel, inexact block-Jacobi splitting of 
the transport operator (Warsa et al, 2003).  It was shown that using the diffusion synthetic 
acceleration (DSA) to precondition the problem was efficient and scalable.  However, 
DSA was no longer an effective preconditioner for problems that are optically thin on 
large (O(102)) numbers of processors.  In such cases, the eigenvalue spectrum degrades 
and convergence of the Krylov method stagnates or slows down to such an extent that it 
is no longer useful. 

Here, we describe how Transport Synthetic Acceleration (TSA) (Ramone et al., 1997) 
can be used to efficiently precondition an iterative method in the optically thin case.  We 
modified the traditional TSA to make it simpler to implement and to improve 
performance when TSA is used in conjunction with DSA. We will see that with this 
preconditioner, simply the parallel, block-Jacobi iteration itself can outperform Krylov 
acceleration of the split operator. 

Parallel, Inexact Block-Jacobi Splitting 
The time-independent SN equations with isotropic scattering for the angular flux 
( )m rψ  in the direction are ˆ

mΩ

( )( ) ( ) ( ) ( ) ( )1ˆ , for 1, , ,
4m t m s mr r r r q r m Nσ ψ σ φ Aπ

Ω ∇+ = + =i …  (1a) 
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where scalar flux  is computed using a specified -point quadrature over the unit 
sphere: 

( )rφ AN

( ) ( )
1

.
AN

m m
m

r w rφ ψ
=

=∑   (1b) 

Boundary conditions have been ignored and  is an inhomogeneous source term. 
Equations 

mq
(1a) and (1b) are discretized in space (centered on a total of  spatial 

locations in the mesh), leading to the following matrix equation for the vector of angular 
fluxes    

CN

A CN NΨ∈

,L MS QΨ = Φ +   (2a) 

.DΦ = Ψ   (2b) 

The meanings of the operators in Eqs. (2a) and (2b) are deduced by comparing with Eqs. 
(1a) and (1b).  As is usually the case, the problem can be cast in terms of the scalar fluxes 

by inverting CNΦ∈ L  and operating from the left with : D
1 1 ,DL MS DL Q− −Φ = Φ +      (3a) 

or 

( )1 .1I DL MS DL Q−− Φ = −   (3b) 

The action of the operator  is computed with a traditional space-angle sweep.  In a 
spatially decomposed parallel implementation, finding a sweep schedule that is close-to-
optimal and scalable (as well as identifying and breaking cycles in the graph) is difficult 
and often inefficient (Pautz, 2002). 

1L−

A parallel, inexact block-Jacobi splitting of Eq. (3b) corresponding to a spatially-
decomposed problem requires not only the scalar fluxes on the interior of the sub-
domains as iterative unknowns in the problem, but the angular fluxes on sub-domain 
boundaries as well.  Only the angular fluxes exiting from mesh cells and spatial centering 
locations that border the sub-domain boundary, i.e., mψ  for which ˆˆ 0,mn Ω <i  where  is 
the outward normal of the sub-domain boundary, need to be considered.  These are 
referred to as the “boundary angular fluxes.”  The need for parallel sweep schedule is 
obviated by inverting 

n̂

L  on every sub-domain  independently, rather than over the 
entire domain with a full parallel sweep.  Incoming boundary angular fluxes are 
transferred from neighboring processors to begin the local sweeps and waiting for data is 
no longer necessary. 

p

In the block-Jacobi splitting, the scalar flux vector is augmented by the boundary 
angular fluxes and will be symbolized with .Φ   Note that the operators ,M   and  are 
block-diagonal and the only part of Eqs. 

S D
(2a) and (2b) that have terms coupling processor 

sub-domain is L , which we split into a local part  and a part that couples to the 
boundary angular fluxes on neighboring processors,   Then the parallel, inexact block-
Jacobi splitting can be written as 

0 ,L
.bL
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Q

)⎤ Φ⎦

0 .bL MS LΨ = Φ+ Ψ +   (4) 

Writing (4) in terms of the augmented scalar flux vector and rearranging, this becomes 

( 1
0 bI DL MS L W− ⎡− +⎣ .  (5) 

Notice the addition of the injection operator W  and that some of the operators in these 
last two expressions are augmented.  This accounts for the boundary angular fluxes 
contained inΦ . 

The advantage of the parallel, inexact block-Jacobi approach is that reliable and 
readily-available software for domain decompositions that minimize the surface-to-
volume ratios of sub-domains can be used for this parallel algorithm, in contrast to 
specialized decompositions used with some other parallel sweep scheduling approaches 
(Pautz, 2002).  The disadvantage is that the convergence rates of iterative methods slow 
with increasing number of processors (Warsa et al, 2003; Yavuz and Larsen, 1989; 
Yavuz and Larsen, 1992). 

A MATLAB implementation of the parallel, block-Jacobi splitting for one 
dimensional problem has shown quantitatively why the GMRES convergence rate 
stagnates or degrades to such a point as to be impractical in optically thin problems.  As 
the number of processors increases, the eigen-spectrum spreads over the complex plane 
and there appears to be a correspondence to the radius of the spectrum and convergence 
rate, even though the spatial discretization of the transport equation results in a non-
normal operator, which is somewhat contrary to the ideas presented in (Campbell et al., 
1996).   

In Figure 1, we plot the eigenvalue spectrum for source iteration for 2 processors 
where the width (H) is 128 cm, scattering ratio (c) is 0.999 and the total cross section is 
0.0625 cm-1.  In Figure 2, we plot the eigenvalue spectrum for the same problem with 128 
processors with other properties as Figure 1.  We can easily observe that the eigenvalue 
spectrum spreads out as we increased the number of processors from 2 to 128.  This 
spreading of the eigenvalues will decrease the effectiveness of a GMRES iterative solver.  
Therefore, our goal is to find a preconditioner that restores convergence of GMRES in 
such problems, where the resulting iteration scheme clusters the eigenvalues. 
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Figure 1. Eigenvalue spectrum for 2 processors. 
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Figure 2. Eigenvalue spectrum for 128 processors. 
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Modified Transport Synthetic Acceleration 
For optically thick problems, a global DSA scheme that includes residuals from the 

boundary angular fluxes and makes corrections to those angular fluxes, works well when 
used to precondition a Krylov iterative method (Warsa et al., 2003).  However, we 
observed that when the problem becomes optically thin, convergence of the Krylov 
method stagnates or slows to such an extent that it is no longer useful.  In order to 
improve convergence, we constructed a preconditioner for Eq. (5) of the form 

( )I QPRS+  where ( 1 ,P L MSD)−≈ −  (6) 

and the operators  and Q R  represents appropriate projections and interpolations.  The 
preconditioner takes this form because it represents synthetic acceleration (Adams and 
Larsen, 2002; Kopp, 1963; Warsa et al., 2004).  In the case of DSA,  is calculated by 
solving a diffusion equation.  For TSA,  is simply a low-order transport equation.  
Traditional β-TSA is implemented by letting 

P
P

( )1s sσ β σ′ → −  and ( )t t sσ σ βσ′ → −  in 

the low-order operator, where [ ]0,1β ∈  (Ramone et al., 1997).  Both L  and  are 
modified in the low-order equations.  Reducing the amount of scattering improves 
convergence in calculating the inverse in Eq. 

S

(6).  Modifying L  ensures the low-order 
equations satisfy the same conservation properties as the original system.  Typically, a 
lower order quadrature is used as well to improve efficiency, although this reduces 
effectiveness to some extent.   

In our implementation of TSA, we simply reduce the scattering in the low-order 
equations by some factor [ ]0,1β ∈ , i.e., .s sσ βσ′ =   We have found this to be simpler for 
implementation purposes, particularly in time and energy dependent calculations.  It 
appears to be just as efficient in most cases.  In some cases, this modified β-TSA 
approach loses effectiveness when the inverse of the low-order equations is not computed 
to high tolerance, as was done in the original TSA implementation described in (Ramone 
et al., 1997).  However, we observed this is not a serious problem in optically thin 
problems that is the focus of our study.  The modified β-TSA approach has two distinct 
advantages.  First, the traditional method can be unstable when used to precondition 
source iteration, whereas the modified approach appears to be stable.  Second, in 

problems with scattering ratio ( s

t

c σ
σ

= ) approaching 1, the effective scattering ratio of 

the low-order problem in the traditional TSA method is a slowly varying function of the 
parameter ,β  which means the low-order problem converges slowly unless 1β →  and 
which, in turn, means the low-order equations do not approximate the high-order 
equations as closely.  The modified β-TSA approach has an effective scattering ratio of 

,cβ  which means the low-order equations can more closely approximate the high-order 
problem while converging quickly. 

We observed that while either approach can be used to effectively precondition the 
Krylov iterative solution of the parallel, inexact block-Jacobi splitting in optically thin 
problems, efficiency of the overall computation is less than when the TSA preconditioner 
is used to accelerate the block-Jacobi iteration itself in such problems.  We found that 
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choosing 1β =  in the original TSA method or 0β =  in the modified approach works 
extremely well in optically thin problems.  This is significant because in the absence of 
scattering, the number of iterations needed to invert the low-order equations on  

processors scales roughly as O ( , O
pN

)pN ( )1/ 2
pN , and O ( )1/3

pN  in one, two and three 
dimensions, respectively.  Furthermore, the number of iterations could be less than that if 
all or some of the domain is optically thick.  This observation has some intriguing 
implications for multi-dimensional applications of the parallel, block-Jacobi splitting 
because performance should actually improve on large numbers of processors. 

In Figure 3, we plot the eigenvalues for source iteration for 32 processors, where      
H = 2 cm, 1/16tσ =  cm-1 and 0.999c = .  As we observed in the previous figure, the 
eigenvalue spectrum is not well clustered.  Therefore, GMRES will have difficulties 
solving this problem.  In Figure 4, we plot the eigenvalues for the modified TSA for three 
different values of β(0.0, 0.1, 0.5) and with the same properties as Figure 3.  There is a 
dramatic difference between Figures 3 and 4.  The eigenvalues from the modified TSA 
are well clustered and away from the origin.  This indicates GMRES will be very 
efficient in solving this problem.  As β increases, the clustering is tighter.  However, this 
requires more iterations in the low-order solution sweeps.   

 

 
Figure 3.  Eigenvalues for source iteration and 32 processors. 
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Figure 4.  Eigenvalues for modified TSA and 32 processors. 

 
It should be noted that our modified TSA is not effective for serial applications.  The 

Fourier mode analysis of the continuous modified TSA reveals that “flat” mode is not 
attenuated like the traditional TSA (Ramone et al., 1997).  Instead, the eigenvalue for the 
flat mode is just the scattering ratio squared for the modified TSA when β=0.  This is 
expected since this is equivalent to two applications of the transport operator or two 
source iteration sweeps.  However, the modified TSA does not diverge, which is the case 
for the traditional TSA when β is sufficiently large, for any value of β.   

Numerical Results 
We present a limited set of results that illustrate performance of traditional and 

modified TSA in one-dimensional slab geometry.  The results are necessarily limited 
because we can explore only a small subset of the large number of possible TSA 
parameter combinations and problem types. 

A code implementation of the two TSA algorithms is used to measure actual 
computational effort.  Measurements are shown for Krylov and source iteration methods, 
with and without TSA preconditioning, and for a range of values of .β   We use the same 
quadratures for the low and high order problems, in contrasts to what is usually done in a 
TSA implementation.  This eliminates the projection and interpolations that are otherwise 
needed to accelerate the boundary angular fluxes of the block-Jacobi splitting.  The 
commensurate increase in effectiveness compensates for the cost of using full quadrature 
in the low-order TSA problem, particularly when there is no scattering in the TSA 
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operator.  The number of iterations and CPU times were measured on 128 processors for 
two homogeneous problems with 2048 mesh cells per processor and a scattering ratio of 

  Table 1 shows the results for a problem with a total width of 2 cm and 0.999.c =
1/16tσ = cm.  Table 2 shows the results for a problem with a total width of 128 cm and 
16tσ = cm.  The sub-domain optical thickness for these two problems are  

and , respectively.  Convergence for the outer iteration is achieved when the 
residual satisfied 

1/1024H =
1/16H =

5
2 2

/ 1outerr b 0−≤ .  The inner iteration converged when that residual 

satisfied 7
2 2

/ 1innerr b −≤ 0 . 

 
Table 1.  Computational measurements for subdomain optical thickness H = 1/1024. 

Method β Inner Iterations CPU (s) Iterations CPU (s)
None n/a n/a 550 3.3 n/c n/a

SI 6 5.9 4 5.1
GMRES n/c n/a n/c n/a

SI 6 16 4 14.4
GMRES n/c n/a n/c n/a

SI 7 6.5 2 3
GMRES n/c n/a n/c n/a

SI 5 18.7 2 12.6
GMRES n/c n/a n/c n/a

SI 3 15.1 1 11.2
GMRES n/c n/a n/c n/a

SI GMRES
Outer

TSA Preconditioner

Traditional

Modified

1

0.98

0

0.5

0.95
 

 
Table 2.  Computational measurements for subdomain optical thickness H = 1/16.  

Method β Inner Iterations CPU (s) Iterations CPU (s)
None n/a n/a 3954 36.6 n/c n/a

SI n/c n/a 19 16.9
GMRES n/c n/a n/c n/a

SI n/c n/a 19 90.8
GMRES n/c n/a n/c n/a

SI 369 298 9 10.5
GMRES n/c n/a n/c n/a

SI 187 366 7 23
GMRES n/c n/a n/c n/a

SI 22 305 4 75.4
GMRES n/c n/a n/c n/a

TSA Preconditioner
Outer

SI GMRES

Traditional
1

0.98

Modified

0

0.5

0.95
 

 
For thin problems such as these, restarted GMRES stagnates.  So, whether GMRES 

as the inner iterative method (note that the inner iterations are not preconditioned) the 
problem method does not converge.  Of course, this is what originally motivated this 
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research.  As was alluded to earlier, we find the best performance when no scattering is 
present in low-order TSA operator.  In this case, the low-order problem must be solved 
with source iteration because restarted GMRES stagnates.  Nonetheless, it leads to an 
efficient algorithm because source iteration needs exactly  iterations to converge in 
the absence of scattering.  While the timings for source iteration and GMRES outer 
iterations are similar for different values of 

pN

β , GMRES performed slightly better.  The 
modified TSA method always performed better than the original TSA method.  Finally, 
we have observed that the optical thickness of the sub-domains is the primary factor 
affecting convergence. 

Next, we present results from parallel scaling tests.  The test problem has the 
following characteristics: 

• S8 quadrature 
• Fixed problem width H = 2 cm (equal-width mesh spacing) 
• Constant isotropic distributed source q = 1 
• Constant material properties:  -11/16 cm , 0.999t cσ = =
• Vacuum boundary conditions 
• Relative convergence criteria: 10-5 (high order) and 10-7 (low order) 

We compared source iteration, GMRES(15) and GMRES with traditional TSA (β=1.0 
and β=0.9) and modified TSA (β=0.0, β=0.5 and β=0.95) as preconditioners.    

The scaling tests were conducted on the Q machine at Los Alamos National 
Laboratory using 1 processor to 1024 processors.  First we show the results of weak 
scaling tests, where the number of cells per processor remained fixed at 65,536.  Figure 5 
shows the number of iterations as a function of number of processors for each type of 
solution methods.  For both source iteration and GMRES, the number of iterations 
increased as the number of processors increased.  However, for GMRES the problem 
stagnates when the number of processors was greater than 16.  This is expected since the 
restart value is 15.  For all TSA methods, the iteration count remains constant as the 
number of processors was increased.   Figure 6 shows the CPU time as a function of the 
number of processors, which reveals parallel scaling issues for all methods.  Ideally, we 
would like to have a constant CPU times.  However, this is impossible due to 
communication costs.  It should be noted that modified TSA with β=0, was the most 
efficient out of all the methods when the number of processors was large. 
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Figure 5. Number of iterations for weak scaling (65,536 cells per processor). 
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Figure 6. CPU times for weak scaling (65,536 cells per processor). 
Figures 7 and 8 are plots of the number of iterations and CPU times for strong scaling 

tests, where the total number of cells were constant at 2,097,152.  The number of 
iterations (Figure 7) is identical to the results from the weak scaling tests.  The CPU time 
to solve this problem decreased from 1 processor to 128 processors.  The CPU time 
increased as number of processors increased above 128 processors.  This is most likely 
due to communication time between different computer nodes.  Once again, modified 
TSA with β=0, was the most efficient for large number of processors. 
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Figure 7. Number of iterations for strong scaling (221 cells). 
 

0.1

1

10

100

1000

1 2 4 8 16 32 64 128 256 512 1024

Number of Processors

C
PU

 ti
m

e 
(s

)

SI

Mod. (0)

Mod.(0.5)

Mod.(0.95)

Trad.(1.0)

Trad.(0.98)

GMRES

Figure 8. CPU times for strong scaling (221 cells). 

Conclusions 
We have identified a preconditioner that can restore convergence of an iterative 

solution of the parallel, inexact block-Jacobi splitting of the transport operator in 
problems where the operator (without preconditioning) would stagnate.  We observed 
that this preconditioned oeprator is robust and efficient, at least in the homogeneous, one-
dimensional problems we have considered so far. 

An issue raised by this investigation is one has been remained since TSA was 
originally introduced.  That is, how can the various parameters be chosen reliably so that 
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TSA remains efficient and effective under a wide variety of circumstances, including the 
value of β and the quadrature order for the low-order TSA operator.  There is an interplay 
between efficiency and effectiveness in the choice of these parameters that is not well 
understood, which is particularly true for a Krylov iterative method solution of the 
parallel, block-Jacobi splitting.  Furthermore, we have found that a parallel 
implementation of restarted GMRES entails enough overhead that multiple applications 
of the transport operator per GMRES iteration reduce the overall cost of the solution.  
This is in contrast to serial implementations for which the reduction in iterations does not 
compensate for the additional applications of the operator at each iteration (Guthrie et al., 
1999; Warsa et al., 2004).  The number of times that the transport operator should be 
applied per GMRES iteration is a new free parameter whose effect on efficiency and 
convergence rate is also not well understood. 

We are currently investigating how effective TSA is at preconditioning a multi-
dimensional implementation of the parallel, block-Jacobi splitting.  A related question is 
whether the modified β-TSA is effective for full parallel sweeps in multi-dimensions.  
We hope to explore whether multiple application of the transport operator per iteration 
reduces computational cost for both the block-Jacobi splitting and full parallel sweeps in 
multi-dimensions when solving with a Krylov iterative method on parallel platforms.  We 
are currently pursuing an approach whereby the modified TSA method is used to 
precondition the fully-coupled, energy dependent transport operator, solved in parallel 
with restarted GMRES.  This is in contrast to the usual approach of the classic inner-
outer (Gauss-Seidel) iteration in energy.   

What is clear from these considerations is that we have raised more questions than we 
have answered concerning solving and preconditioning the parallel, inexact block-Jacobi 
splitting of the transport operator.  We hope to answer some of these questions in the near 
future. 
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