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INTRODUCTION 
The SINARA code was created to simulate some emergency processes in fast nuclear reactors [1]. The code 

solved boundary-value problems for 2D non-stationary equations in cylindrical coordinate system (the R, Z 
geometry). The code was applied to simulate destruction of reactor core casing, and assess an emergency situation at 
destruction of atomic power station structures, etc. [2]. 

The SINARA code was adapted to simulate problems of heat and mass transfer [3, 4]. Accuracy of the Eulerian 
stage of the calculations was improved.  Implicit algorithm was enhanced for fluid simulations, in which material 
velocity was significantly smaller than the speed of sound and therefore, Mach number is much smaller than unity.  
The method was modified to incorporate capabilities of simulating both compressible and incompressible flows in 
one code.  Physical viscosity and a number of models of turbulent flows were developed in the SINARA code.  A 
geometry-based model was implemented to include heat radiation. Boundary conditions of mass inflow and outflow 
at the arbitrary boundary parts were implemented for the Eulerian stage of the simulations.  A difference scheme for 
the equations with the periodic coefficients was developed. 

The method of decomposition into the physical processes was used. To solve a specific problem, it is possible to 
use an arbitrary set of package modules. In this case different physical processes and their interaction with each other 
are simulated, and the appropriate equations are solved simultaneously.  In particular, the package solves the 
problems of heat and mass transfer using jointly non-stationary hydrodynamics and heat conduction modules. 

1. BRIEF CHARACTERISTIC OF THE SINARA CODE 
The SINARA code solves boundary-value problem for 2D non-stationary equations in cylindrical system of 

coordinates (R-Z geometry). 

Processes that can be simulated: 

• motion of multi-component one-velocity viscous medium, 
• account for elastic-plastic and strength features of materials, 
• turbulence, 
• linear heat conduction 
• radiation. 

The codes are implemented as individual modules.  The SINARA code includes the following modules. 

1)  Module for non-stationary hydrodynamics.  
2) Module for turbulent mixing.  
3)  Module for non-stationary hydrodynamics including elastic-plastic and strength features of medium. 
4) Module for solving heat conduction equations. 
5) Module for radiation.  

Medium models: 

• Model of ideal fluid including multi-component medium. 

• Model of elastic body including plasticity, compressibility, failure, melting and evaporation.  

• Model of viscous fluid including multi-component medium. 

• Model of turbulence. 

• Geometry-based model of radiation. 

Construction of a computational model was based on decomposition into physical processes. At a time step the 
system under consideration is decomposed into several subsystems soled sequentially.  This approach allows 
description of problems in different approximations with the help of an arbitrary set of the equations. 
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1.1.  EXPLICIT-IMPLICIT ALE-METHOD  
An approach of the ALE-method [5] was used to solve equations describing a multi-component single-velocity 

flow.  At the first phase the equations are solved in Lagrangian coordinates.  The phase consists of explicit and 
implicit steps.  The explicit step uses a staggered mesh.  Velocities and coordinates are stored in mesh nodes and the 
rest variables are in cell centers.  At the implicit step we add the determination of pressure at an advanced time.  For 
this purpose we linearize equations in which time derivatives are replaced by finite differences and equations of state 
to obtain the following system of first-order equations for viscous pressure and velocity functions: 
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Two options are possible. 

The first involves the solution of the system (1) to obtain velocity vectors in cell centers and then interpolate 
velocities in nodes and obtain the other sought functions.  

The second option implies the use of acceleration 
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solved using only the found viscous pressure which is then used to determine node velocities on the staggered mesh. 

The system (1) is solved using approximations of the diamond type [6].  The equations are approximated within 
one cell of quadrilateral mesh. The resulted equations contain unknown functions in the center and on four edges of 
each cell. With a stabilizing corrections method, the system is reduced to two systems of one-dimensional difference 
equations.  For each of them, the functions in cell centers are replaced by the expressions 
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Where δ and θ are parameters defining the scheme properties.  With the equations (2), the one-dimensional 
difference equations are reduced to linear equations for unknown functions on cell edges.  These equations are solved 
by sweeping. 

It is not necessary to apply splitting in solving (1).  We can modify (2) so as to obtain a system of difference 
equations for unknowns on all cell edges.  This system of linear algebraic equations can be treated with any solver 
available. 

In all cases, the solution of the system (1) obtained with a diamond approach is more accurate than that obtained 
with traditional schemes which use approximations over several cells (9 in the 2D case). 

1.2.  IMPROVEMENT OF SIMULATION EFFECTIVENESS FOR ALMOST INCOMPRESSIBLE FLOW 
A peculiar feature of such flows is that medium velocity is much less than the speed of sound; therefore, Mach 

number is much less than a unity.  Any compression or rarefaction occurs at practically constant pressure.  The 
objective of the work was to modify the technique so that to make it suitable for simulation of both incompressible 
and compressible flows.  To simulate such flows in the SINARA code, an iteration parameter was introduced in the 
equation of momentum conservation, which increased Mach number beyond the limits of a subsonic flow. 

The iteration parameter scaling the pressure gradient was introduced in order to change pressure perturbation in 
the subsonic flows and improve computational efficiency without any changes to other flow features.  Conservation 
equation of momentum now includes parameter α. The modified equation is as follows:  
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For efficient computations, parameter α should be as large as possible keeping value of /P Pαδ  small compared 
to one.  The SINARA code selects α so that /P Pαδ  <0.04, provided the selected α is larger than one. 

1.3.  MODELS OF TURBULENT MIXING IN THE SINARA CODE  
To include turbulent mixing, two models were implemented in SINARA code: Lv-model and kε-model of 

turbulence. 
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1.3.1. Kε-model of turbulence 
Model kε is a model of the first-order closure, which means that a sequence to correlate turbulent components of 

different values ceases at the first-order correlation equations.  

Transition from layer n to n+1 is iterative.  An iteration loop has three stages: А, B, С and D. Stages А, B and С 
together constitute the computations where computational cells move together with gas and fluid.  

• stage А solves gas dynamic equations with the generation part of kε-model equations; 
• stage B accounts for turbulent diffusion and turbulent pressure and solves energy equation; 
• stage С accounts for heat flow and turbulent heat transfer. 

During stage D, flow field is “frozen” and recalculated into a new mesh. 

1.3.2. Lv –model 
Model lv is a model of the first-order closure, it is based on the similarity to molecular transport processes and 

introduction of turbulent viscosity coefficient.  This model is reduced to the system of Navier-Stokes equations.  

Turbulent viscosity coefficient is determined with Prandtl formula, which is ( )1/ 22 :L G uµ ρ= ∇ , where L is 
turbulence length. Physical sense says that L is a characteristic size of the main eddies in the flow. If the flow is 
limited with rigid walls L could be estimated as L=αR, where α≈0.1 is an empiric constant, R is the characteristic size 
of the flow.  

1.4.  IMPROVING THE ADVECTION ACCURACY 
The SINARA code exploits ALE-method [5] for numerical simulation of flows. The step calculation is split into 

two stages. At the first one the equations are solved in the Lagrangian variables, in this case the computational mesh 
deforms together with the material.  During the second stage a new mesh is constructed. And then the recalculation of 
all values from the first mesh onto the second one is carried out.  

Flow computation can be done in two steps: first, construct an interpolation function and second, directly 
compute the flows. 

Linear density distribution with a cell is used. After gradient field is calculated, the monotonicity-ensuring 
technique [7] is applied, which smoothes the gradients wherever their monotony is disturbed.  

When calculating velocities, the cell momentum is used as a function to be recalculated. An additional mesh is 
constructed to calculate the momentum: each cell is decomposed into four smaller cells. 

1.5.  TESTING OF THE SINARA CODE 

The modified technique was tested with the following problems [3, 4]. 

• Tests for hydrodynamics and heat conduction equations [8, 9] 

• Viscous incompressible flows. 

o Simulation of air convection in a square area under gravity. Temperatures, velocities and 
densities computed with the CFX code [10] and SINARA codes coincided at the moment of 
transition to the steady state. 

o The Pouasel flow is a flow of incompressible fluid in a cylindrical tube. Boundary conditions 
of material inflow and outflow were used. Maximum discrepancy between the numerical and 
analytical solutions is no more than 0.1%. 

• Turbulence tests. 

o Mixing in 2D stationary plane layer. The Кε-model was used. The obtained results are in good 
agreement with the experimental data and simulations done with other codes.  

o The problem of flow through a rough pipe. Simulations employed the Lv –model of 
turbulence. Simulations were done until solution reached the steady state. The results were 
compared to the analytical solution. 

• Testing of the advection scheme.  

o The Sod problem. The results obtained with different schemes were compared to the 
analytical solution. 
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o Gas expansion into vacuum from initial triangular prism configuration.  This 2D problem has 
an exact solution. 

To test the radiation module we considered a problem about emissivity of two parallel plates of finite size.  The 
obtained result was compared to the solution derived from the analytical solution in assumption that the plate length is 
much larger than the distance between them. 

2. SINARA APPLICATION TO THE DIRECT SIMULATION OF FAS INTERFACE 
INSTABILITIES 

Many physical applications require studying fluid interface dynamics.  These include, for example, high energy 
density physics, astrophysics, or physics of atmosphere and ocean. Flows of such kind are often unsteady and any 
initial perturbations present on the interface grow beyond all bounds. Rayleigh-Taylor instability results from the 
orthogonal acceleration acting on the interface of fluids of different densities. It occurs if density and pressure 
gradients are directed oppositely from the interface. In case of pulsed acceleration, or shock wave, the interface is 
always unstable (Richtmyer-Meshkov instability).  

Numerical simulations play a great role in hydrodynamic instability research. One of the problems that inevitably 
arise in the computation of physical systems is the necessity of establishing the credibility of such simulations. In 
order to accomplish this task, it is necessary to carefully examine both idealized numerical simulations and 
experimental data. 

A number of experiments were done with the electromagnetic shock tube developed at RFNC-VNIITF [11].  
They aimed to study the evolution of initial sinusoidal perturbations on the boundary of noble gases under the action 
of a decelerating shock wave.  Experimental data on instability evolution and turbulent mixing on artificially 
perturbed interfaces of gases of different density are available.  

The evolution of perturbations was recorded using the IAB-451 schlieren-system optically aligned with two high-
speed photography cameras of SFR-2m or VFU types implementing simultaneous shooting.  The measurement error 
depended on the resolution of the cameras: 0.5mm for the photochronograph and 0.8mm for the SFR camera. The 
perturbation amplitude or the width of the perturbation zone was determined by measuring the distance between the 
left and right edges on the image of the perturbed interface of two gases. 

The following two cases are considered: 

- The shock wave moves from the light gas to the heavy one and generates Richtmyer-Meshkov instability; the 
rarefaction wave makes the interface gravitationally stable;  

- The shock wave moves from the heavy gas to the light one, generating Richtmyer-Meshkov and Rayleigh-
Taylor instabilities.  

2.1.  PROBLEM STATEMENT  

2.1.1. Configuration 1 
The decelerating shock wave moves from the heavy gas to the light one. Region I: krypton (Kr) of initial density 

3
0 3.36 10ρ −= ⋅ g/cm3, adiabatic exponent γ =1.689. Region II: helium (He) with 3

0 3.36 10ρ −= ⋅ g/cm3 and γ =1.63. 

Fig.1. Computational setup for configuration 1 

The initial pressure in the entire system is p0=0.984 bar.  Initially the gases are at rest. 

Boundary conditions: on the left boundary (y=0), u=U0exp(-t/τ) where U0=0.948 mm/µs,  τ =153.56 µs (the 
values are taken from the 1D simulation of the experiment).   

y=1500 mm,  x=0 mm, and x =100 mm are rigid walls.  

  
                    I                                  II 

100 

X (mm) 

Y (mm) 0 240 1500 
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The boundary between regions I and II is defined as y=y0 + a0 сos(2πx/λ), where  y0=240mm,  λ=50mm, 
[0;100]x∈ mm.  The calculations were done for a0 = 1 and 2.5 mm. 

2.1.2. Configuration 2 
The shock wave moves from the light gas to the heavy one.  The computational configuration is shown in Fig.2. 

 

Fig.2. Computational setup for configuration 2 

Region I: helium (He) of initial density 4
0 1.63 10ρ −= ⋅ g/cm3, γ =1.665 

Region II: xenon (Xe), 3
0 5.383 10ρ −= ⋅ g/cm3, γ =1.667   

The initial pressure in the entire system is p0=0.976 bar.  The initial velocity is u=0. 

Boundary conditions: on the left boundary (y=0), the pulsed pressure was 
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where Pn=1.217 bar,  P*=123.3 bar,    t*=1.2 µs,   τ =97.4µs, T=75µs, and y=1695mm, x=0,  x=100mm are rigid walls. 

The boundary between regions I and II was y=y0 + a0 cos( 2 /xπ λ ),where y0=1290mm,  λ=50mm ,   
[0;100]x∈ mm. The calculations were made for a0=1, 2.5, and 7.5 mm. 

All calculations were focused on the time history of the mixing zone max miny y− . It was assumed that the 
shock wave crossed the interface at t=0. 

2.2.  MIXTURE MODELS 
SINARA implements several mixture models.  Each of them shows its advantages and disadvantages, and their 

applicability is limited.  All the models treat single-velocity flows. 

The simplest homogeneous model assumes that all materials in a mixed cell have equal densities and pressures.  
Each material has its mass fraction.  All thermodynamic functions (TDF) in a cell are calculated by averaging 
appropriate functions for each material with respect to its mass fraction. 

In heterogeneous models, each material in a mixed cell has its own density and temperature.  The mean values of 
TDFs in a cell are calculated with some weight functions which depend on volume fractions.  The construction of 
these models requires special assumptions, such as 

• Equal compressibility of materials in mixed cells, i.e., equal velocity divergences; 

• Equal pressure increments and ability to equalize material pressures in a cell; 

• Dynamic equilibrium, i.e., equal pressures of material in the mixed cell. 

The first two do not require solving non-linear equations. 

In addition to these models of mixed cell treatment, we use particle markers to ensure high accuracy of interface 
reconstruction.  The approach is similar to that one used for the ALE-method [12]. 
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2.3.  PERTURBATION EVOLUTION CALCULATIONS: CONFIGURATION 1 
The calculation was made for two amplitudes of the initial perturbation: a0=1 and 2.5 mm.  The number of 

intervals differed (see Fig.3 and Table 1). 

Fig.3. Computational geometry  

Table 1.  Number of intervals. 
     Segment 

    
Variant # 

 
AD 

 
AB 

 
BC 

1 80 120 230 
2 200 205 300 
3 300 315 450 

 
Figures 4a and 4b show the width of the mixing zone versus time obtained in experiment and calculation (a0=1 

mm and a0=2.5 mm, respectively).  Figures 5 show interface configurations at the terminal time. 

2.4.  PERTURBATION EVOLUTION CALCULATIONS: CONFIGURATION 2 
The calculation was made for three amplitudes of the initial perturbation: a0=1, 2.5 and 7.5 mm.  The number of 

intervals differed (see Fig.3 and Table 1). 
 

Figure 6 shows the relative amplitude 0/a a+  of the interface versus time for a0=1, 2.5 and 7.7 mm (the time when 
the shock wave reaches the perturbed interface is subtracted).  Figure 7 shows interface configurations at the start and 
end (t=448 µs) of calculation.  Figures 8 and 9 present the same data for a0=2.5mm (termination time 346 µs) and 
a0=7.5mm (termination time 356 µs), respectively. 
 

2.5.  DISCUSSION OF RESULTS FOR CONFIGURATION 1 
Calculated results presented in Fig. 4 (λ=50mm, 0=1 and 2.5 mm) are seen to agree rather well with experimental 

data.  We may conclude that for λ=50 mm, the evolution is linear till t=130 µs; and here experimental results, 
calculations and the linear theory agree rather well. 

Now consider the mixing constant α estimated from experimental data. 

 

The transition to the turbulent phase depends on particular experimental conditions but the ultimate stage of 
turbulent mixing must not depend on initial conditions.  It is almost impossible to implement the asymptotic stage of 
mixing in experiment because of the finite size of the tube and the short time of acceleration.  We assume that in the 
described experiments the transition to the turbulent phase has occurred, and experimental results are interpreted 
following from the relationship for the real size of the mixing zone €L  [13]  

0
€L L L= + . 

Here L0 is the width of the initial turbulence zone and L is the self-similar width of the mixing zone 
(independent of initial conditions) written as 2L A Sα= . Here 1 2 1 2( ) /( )A ρ ρ ρ ρ= − +   is Atwood number (ρ1 and ρ2 
are gas densities) and S is deceleration length defined as €S U t x= ∆ − ∆  where U∆ – is the increment of the interface 
velocity due to the shock wave, t is time relatively to that when the shock wave reaches the interface, and €x∆  is the 
distance between the current and initial positions of the interface. 

It should be noted that the above formulas apply only to the asymptotic stage of gravity driven mixing where the 
flow is chaotic.  However, even at terminal times both experiment and calculation show sharp, non-destroying 
mushrooms of the heavy gas, and their number does not change, i.e. the initial configuration is not yet forgotten.  

A B C

D E F

A B C

D E F
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To describe the gravity driven turbulent mixing, we calculate € / ( 2 )d L d S Aα= .  Assuming a linear 

relationship between €L   and 2S , and using the least square method for S>10mm (t>150 µs), for all experiments 
we obtain α = 0 32.  independent on the initial amplitude. 

If take into account experimental data for t>380 µs (S>63 mm) and formally recalculate this value, we 
obtain 0.26α ≈ .  So, not accounting for the experimental data within (150µs, 380µs) representing the non-linear stage 
reduces the mean value of α  which is constant for only the turbulent phase. 

 

Our calculations show (see Fig. 10 presenting experimental and calculated results in ( €, 2L S ) coordinates for 
λ=50 mm, а0=1 mm) that α seems to continue its slow decrease, i.e. the parameter is not yet constant. 

 
Calculated and experimental data agree rather well. 
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Fig.4a.   Configuration 1: Turbulent mixing width versus time (а0=1 mm) 

Fig.4b.   Configuration 1: Turbulent mixing width versus time (а0=2.5 mm) 
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Fig.5a.  Configuration 1: Gas interface at time t = 694 µs; a0=1 mm 

Fig.5b.  Configuration 1: Gas interface at time t = 663 µs; a0=2.5 mm 
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Fig.6.    Relative perturbation amplitude a(t)/a0  versus time; a0 = 1mm:    - experiment,   - calculation; 

a0=2.5mm:  - experiment,   -  calculation; a0= 7.5mm:  – experiment,  – calcluation 
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Fig. 7a.  Configuration 2: Gas interface zero time; a0=1mm 

Fig. 7b.   Gas interface at time t = 448 µs 

Fig.8a.  Configuration 2: gas interface at zero time; a0=2.5 mm 

Fig.8b.  Gas interface at time t = 346 µs 



 10

Fig.9a.  Configuration 2: gas interface at zero time; a0=7.5 mm 

Fig.9b.  Gas interface at time t = 356µs 

 
Fig. 10.  €L  versus 2S  for a0=1mm and λ=50mm: * - experiment,    ▬  averaged experimental results,   • - 

calculation by the vortex method,      ■ -  SINARA calculation 
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