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PRIZMA-D is a Monte Carlo code which solves eigenvalue problems for reactors and 
critical experiments.  The code provides wide capabilities to define geometry, materials, tallies 
and variance reduction techniques.  It is capable of tracking neutrons, photons, electrons, 
positrons and heavy charged particles with allowance for their mutual transformations. 

The code solves a wide class of problems.  It can be used, for example, to estimate: 
 

1. the effective multiplication factor Keff, neutron lifetime tl from fission to fission, or the 
average number νср of particles produced in fission; 
2. some parameters (fluence, spectrum, dose) for the field of (n,γ)-radiation in reactor’s vicinity; 
3. the effect of (n,γ)-radiation on systems located in close proximity of a reactor; 
4. penetration of neutrons and photons through a collimator and their effect on systems behind 
the collimator; 
5. nuclear safety by predicting Keff  and  the number of neutrons penetrating a container, with 
and without allowance for mirror reflection at its wall; 
and other. 

 
The tree of events is treated lexicographically.  This approach suits the branching 

processes well but looses particle prehistory which often is needed if we want to calculate the 
scores of particles which underwent some specific events.  In this case we use particle flagging 
which consists in applying special flags to particles, one flag for each particular event of interest.  
Then we define tally conditions – the list of flags which a particle must or must not carry.  Using 
logical operations, we can define complex conditions combined of certain flags and some other 
particle parameters.  The scores are tallied if only the condition is satisfied.  The flags can be 
applied to or removed from a particle at the following phases of tracking: 

 
 in the source after the particle has got its initial parameters; 
 when the particle collides; 
 after the type of particle interaction has been selected; 
 after playing game with collision; and 
 when the particle crosses a surface  which separates one region from another. 

 
In addition, there is a wide class of problems (for example, shielding applications) in 

which it is necessary to estimate the effect of small changes (perturbations) in some parameters 
on radiation characteristics.  For these problems, it would be useful to correlate calculations of 
several variants where particle histories from the source to the perturbed region coincide.  The 
problems are solved in the following setup. 

A volume V is inserted in a system which consists of a source and a detector.  The volume 
acts as a perturbation (in particular, it may contain a detector).  It is necessary to estimate the 
effect of  

 
1. Perturbed material: the variants differ in the material filling the volume V; 
2. Increasing volume: V changes as 
V(1) = V1 , V(2) =V1 + V2 ,..., V(k) =V1 +V2 +...+Vk. 
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3. Relocated volume: the volumes V(i), i= 1,…,k are defined in different locations of the 
system; they may differ in geometry and material;  

4. Perturbed concentration: the variants differ in the concentration of materials in a region. 
The difference in concentration is defined using a complex material combined of several 
elementary substances; the weight concentration of one or several substances is changed 
(particularly, by changing only the density of material filling the region), the total weight 
concentration remaining equal to 1. 

 
It is difficult to evaluate the effect of perturbations in independent runs because the 

expected differential effect is often several orders of magnitude smaller than the target quantity.  
A special method of correlated tracking was developed to obtain results in a single run. 

 
 In problems corresponding to 1-3, one can consider two sorts of particles: 
 

– the particles that do not enter the perturbed region; their scores are identical for all 
perturbations; and 

– the particles that enter the perturbed region; their scores are identical until the perturbed 
region is entered. 
Following from this feature, we developed a special technique of particle tracking.  We 

define one flag for each perturbation, and apply all flags defined to source particles.  When a 
source particle enters a perturbation region corresponding to one of the flags, it is split into two 
fragments: one wanders in the perturbed configuration (the other flags are removed), and the 
other wanders in the configuration without perturbations (it carries all flags except the one 
carried by the first fragment).  In the case of perturbed concentrations, particles are tracked in the 
unperturbed configuration and their scores in perturbed configurations are changed using 
appropriate weight factors. 

However, we have to resolve one more problem.  The distribution of fission points in the 
source must correspond to the eigenfunction but each perturbation disturbs it.  The problem can 
be solved in the following way. 

Consider the block-diagram of the code PRIZMA-D. 
 

PRIZMA-D diagram

2

Tracking 
particle 
batches

ИСТ ОСД0

1

ОСД

3

ОСД ОСК

ОCN

ОCF

ОCE

ОCP

ОCI

Summation of 
results for a batch

N

N is the number of small-sample source iterations

 
 
- The ИСТ module defines the initial distribution of neutrons in a system. 
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- The ОСД_0 module defines the first fission points. 
- In cycle 1 we get eigenvector (fission source distribution). 
- In cycle 3 we track particles and tally their scores. 
Cycle 3: 
- The ОСД module gives the next generation of particles.  
- The ОСК module tracks neutrons emitted from the fission points in the current generation 

(non-analog tracking is used if necessary). 
- In cycle 2 we track secondary particles of other types.  
 

When solving perturbation problems, we use a method of small source iterations which 
helps calculate the eigenvalue and the corresponding eigenvector in the OCK module. 

Let M be the number of perturbations and N be the number of source iterations.  At the 
first step, the fission source distribution obtained in the first part of cycle 3 for the unperturbed 
configuration is taken for all variants.  In the OCK module, every neutron is tracked until it is 
absorbed, or escapes from the system, or reaches the N+1-th fission in the fission chain.  The 
scores obtained for each variant at the i-th step (1≤i≤N) are normalized to nm,i – the number of 
fission points at the previous (i-1) step.  For example, if nm,i+1 are fission points obtained at the i-
th step, then nm,i+1/nm,i  is the unbiased estimate of Кeff.  Thus, defining the number N of small 
iteration, we can take into account the effect of perturbations upon the fission source distribution 
for each variant.  N is defined by users with respect to the degree of the perturbation effect.  

The number of fission points nm,i, obtained for each successive batch of source particles in 
the unperturbed variant, is random.  That is why the scores for each particular configuration are 
normalized after the batch has been tracked.  To estimate the perturbation effect, it is necessary 
to set a combined condition which defines the difference between the scores in perturbed and 
non-perturbed configurations.  In this case we compare normalized quantities. 

 
Consider test problems in which we do small source iterations.  In each of them we 

calculated changes in Keff in response to perturbations.  We also evaluated the efficiency of 
single runs compared with independent ones.  It was calculated using the formula: 

 

The relative efficiency of correlated 
calculations
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The first test problem involved Godiva assembly. 
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A sphere of 8.741cm in radius is filled with uranium (U235 94.73% and U238 5.27%) 
18.74g/cm3 dense.  Calculations were done for perturbed densities and perturbed concentrations.  
The number of independent calculations was 8. 

 

Perturbed density

∆ Кeff(σ) 
Ro, 

g/cm3 MCNP 
non-correlated 

MCNP 
correlated 

PRIZMA-D 
non-correlated 

PRIZMA-D 
correlated 

  18.74 0.998063 (0.080)  0.99987  (0.0041) 0.99975   (0.020) 
  18.8    0.00261  (2.22) 0.002648 (0.081) 
  19.0   0.011500  (0.50) 0.01144   (0.082) 
  19.4     0.028910  (0.20) 0.02885   (0.084) 
  20.0   0.05499  (2.1)  0.05282  (0.28) 0.054580  (0.11) 0.05453   (0.087) 
  21.1  0.09467  (1.17) 0.09302  (0.3) 0.100370  (0.059) 0.10028   (0.095) 
  23.5 0.19389  (0.6) 0.18683  (0.34) 0.194380  (0.032) 0.1941     (0.12) 
  26.0 0.28256  (0.43) 0.27110  (0.38) 0.283790  (0.022) 0.2833     (0.18) 

Gain
(744.4+37.2+5.7+1.6-2.6-14.1-67.0)   5600

∆Кeff versus density

∗ ≈
8
1

 
 

The table contains results of MCNP and PRIZMA-D calculations, independent and 
correlated.  In the first line you see the values of Keff for the unperturbed configuration.  The rest 
lines contain ∆Keff for each perturbation.  The figures in brackets are standard deviations.  The 
time of the single run by PRIZMA-D roughly equals the time of one independent calculation.  If 
compare errors in correlated and independent calculations, it is seen that for small perturbations, 
the error in the correlated calculation is much better.  The error increases as the perturbation 
does, and the last lines demonstrate that the error in independent calculations is better than in the 
correlated calculation.  For this problem, we calculated the total efficiency of the correlated 
calculation compared with 8 independent runs.  It made about 5*103. 

 
The next problem involves perturbed concentration. 
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∆Keff(σ) 
Part      

U238,% MCNP 
non-correlated 

MCNP 
correlated 

PRIZMA-D 
non-correlated 

PRIZMA-D 
correlated 

  5.27   0.999920   (0.0023) 0.999957   (0.0047) 
  6.0    -0.00381   (2.2) -0.003772  (0.066) 
  7.5   -0.01164   (0.52) -0.01159    (0.058) 
  10.0     -0.02481   (0.28) -0.02482    (0.048) 
  13.0   -0.04233  (2.85) -0.04251  (1.98) -0.04102   (0.16) -0.04105    (0.041) 
  26.0  -0.12292  (0.9) -0.11749  (2.9) -0.11620   (0.049) -0.11613    (0.042) 
  38.0 -0.20778  (0.54) -0.19346  (3.83) -0.19338   (0.032) -0.1927      (0.16) 
  50.0 -0.30269  (0.36) -0.28273  (4.7) -0.27988   (0.025) -0.2810      (0.47) 

 

Perturbed concentration

∆Keff versus U238 concentration

Gain
(1111+80.4+34+15.2+1.4-25-353.4) 61.6≈1

14
∗

 
Eight variants were considered.  The weight concentration of U238 was varied between 

5.27% and 50%.  Obtained results are presented in Table 2.  For the unperturbed variant where 
U238 concentration was 5.27%, the values of Keff are given.  For the rest variants, the table 
contains the values of ∆Keff

(i) = Keff
(i) – Keff

(1), where i is the variant number. The time of the 
correlated calculation by PRIZMA-D is about 14 times greater than the total time of eight 
independent calculations. 

 
The increasing volume problem was calculated for the critical assembly Godiva. 
 

Increasing volume

Keff and ∆Keff versus radius

 
Radius, 

cm 
 

PRIZMA-D 
non-correlated 

Keff 

PRIZMA-D 
non-correlated 

∆Keff 

PRIZMA-D 
correlated 

Keff 

PRIZMA-D 
correlated 

∆Keff 

    8.741  0.99988 (0.0098)    1.0001   (0.080)  
    9.0   1.0175 (0.0102)     -0.0176   (8.1) 1.0181   (0.072)  -0.01808   (0.90) 
    9.1  1.0238 (0.0099) -0.0239   (5.9) 1.0246   (0.070) -0.02454   (0.79) 
    9.2    1.0302 (0.0100) -0.0303   (4.7) 1.0309   (0.068) -0.03079   (0.72) 
    9.3    1.0362 (0.0100)  -0.0363    (3.9) 1.0368   (0.065) -0.03676   (0.66) 
    9.4   1.0420 (0.0100) -0.0421   (3.4) 1.0426   (0.064) -0.04256   (0.62) 
    9.5  1.0476 (0.0100) -0.0477   (3.0) 1.0483   (0.062) -0.04820   (0.59) 
    9.6  1.0531 (0.0100) -0.0540   (2.7) 1.0536   (0.060) -0.05355   (0.56) 

 

Gain
(80.8+55.6+42.6+34.9+30.0+25.8+23.2) 2300∗ ≈

8
1

 
 

Eight variants were considered.  The unperturbed variant is Godiva with the initial radius 
of 8.741cm.  In the perturbed variants, the radius increases from 9.0 to 9.6 cm.  The table 
contains Keff for 8.741 cm, and Keff and ∆Keff = Keff

(i) – Keff
(1), where i is the variant number, for 
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the rest radii.  The time of the correlated calculation by PRIZMA-D roughly equals the time of 
one independent calculation. 

 
The last test problem exemplifies the relocated volume. 
 
Consider a cylinder of radius Rc = 10 cm with a through hole of radius Rh = 4 cm along 

the center line.  The cylinder is 20 cm long (boundaries: zl = –10cm, zr= 10cm).  It is filled with 
U235 0.99235%, U238 0.00747%.  A sphere of radius R=1.5cm, filled with a perfect absorber, 
moves along the hole.  The following variants were calculated:  

no sphere (unperturbed), and 
the sphere is set at z = -10.0, -7.5, -5.0, -3.0, -2.0, -1.0, 0.0 (center). 

Relocated volume

Keff and ∆Keff versus distance covered by the absorber in the channel

Distance 
from the left 

end, cm 

PRIZMA-D 
non-correlated 

Keff 

PRIZMA-D 
non-correlated 

∆Keff 

PRIZMA-D 
correlated 

Keff 

PRIZMA-D 
correlated 

∆Keff 

      ∞ 1.001311   (0.0034)  1.001199   (0.0077)  
    -10.0 1.001088   (0.0034) 0.000223  (21.6) 1.001008   (0.0077)  0.000191 (1.5) 
    -7.5 0.998437   (0.0035)  0.002870   (1.7) 0.998319   (0.0078) 0.00288   (0.36) 
    -5.0   0.993444   (0.0034) 0.007867   (0.6) 0.993267   (0.0079) 0.00793   (0.21) 
    -3.0   0.989505   (0.0035) 0.011806   (0.4) 0.989411   (0.0079) 0.01179   (0.17) 
    -2.0  0.988041   (0.0035) 0.013260   (0.4) 0.987979   (0.0080) 0.01322   (0.16) 
    -1.0 0.987110   (0.0035) 0.014200   (0.3) 0.987092   (0.0080) 0.01411   (0.15) 
     0.0 0.98680     (0.0035) 0.014511   (0.3) 0.986772   (0.0080) 0.01443   (0.15) 

Gain
(207.4+22.2+8.4+5.8+5.3+5.1+4.8) 1036

8
2

∗ ≈

 
Obtained results are presented in the table.  For the unperturbed variant, he values of Keff 

are provided, and the values of Keff and ∆Keff = Keff
(i) – Keff

(1), where i is the variant number, for 
unperturbed configurations.  The time of the correlated calculation is twice as long as that of one 
independent calculation. 

 
 

CONCLUSIONS 
 

The implemented method of small source iterations works best if perturbations are small.  
If the perturbation effect is greater than 10% of the target quantity, the method may sometimes 
be found disadvantageous in comparison with independent calculations. 

Its main shortcoming is the necessity to define the number of small iterations: if is large, 
the time of calculation significantly increases, and if it is very small, the fission source 
distribution cannot reach the eigenfunction distribution.  Our experience suggests that 5 
iterations are quite sufficient for most problems.  Moreover, since results of each iteration are 
output, we can check convergence and correct iterations. 


