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A conservative finite difference scheme for polygonal spatial grids has 
been constructed to solve the 2D transport equation. The difference 
scheme is constructed in two phases. During the first phase temporary 
values of the unknown function in a computational cell are to be found by 
approximately solving the transport equation along characteristics. 
During the second phase the balance equation is used to find the 
correction factor and all the obtained values of the unknown function are 
multiplied by this factor. There have been developed cost-efficient 
algorithms implementing the sweep method using spatial grids which 
components are polygons of arbitrary shapes.  The technique 
serviceability is demonstrated using the results of numerical simulations.  

 
Introduction 

Construction of difference schemes to solve the 2D transport equation using irregular 
spatial grids is of great interest, because the use of such grids for problems of complex 
geometries provides an efficient space grid. 

The paper by Troshchiyev (1976) gives the formulated approach to construction of 
conservative difference approximations to the 2D transport equation using polygonal 
spatial grids. The important feature of this approach is that the resultant difference 
operator of transport is triangular, if all computational grid cells are convex.   

The paper by Troshchiyev and Shumilin (1986) describes the conservative difference 
scheme for solving the 2D transport equation using irregular spatial grids consisting of 
convex quadrangles with grid values introduced at the centers of cells and on their edges. 
To close the system of grid equations, additional correlations are used, which provide 
either the first, or the second order of approximation depending on the number of 
illuminated sides of cells. The scheme has been successfully used for many years to solve 
a wide range of application problems.  
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Basing on the results of works (Troshchiyev, 1976) and (Troshchiyev and Shumilin, 
1986), Shagaliev and Pleteneva (1989) proposed the extended template scheme, in which 
the grid values of the desired functions are determined simultaneously at nodes, on edges 
and at the centers of the grid cells. Additional correlations in space variables are 
introduced using the resultant template and provide the second order of approximation 
with any variant of illumination of sides of a quadrangular cell. The scheme has been 
generalized to a case of arbitrary convex polygons. 

The given paper describes the construction of the conservative finite difference 
scheme using polygonal spatial grids to solve the 2D transport equation. The grid values 
are introduced at the centers of cells and on their edges, while supplementary values are 
introduces at nodes of cells. The difference scheme is built in two phases. During the first 
phase temporary values of the unknown function in a computational cell are determined 
by finding an approximate solution to the transport equation along characteristics. During 
the second phase the correction factor is determined from the balance equation and all the 
obtained values of the unknown function are multiplied by this factor. Similarly to the 
works described in papers (Troshchiyev and Shumilin, 1986) and (Shagaliev and 
Pleteneva, 1989), the system of grid equations for convex cells is triangular and, hence, 
allows implementation of the sweep method for any illumination direction. For non-
convex cells, special algorithms have been developed with emphasis put on their cost-
efficiency. The technique serviceability is demonstrated by the presented results of 
numerical computations.     

  

Statement of Problem  
Consider a time-dependent 2D kinetic equation of particle transport in axial-

symmetry geometry in multigroup approximation. In cylindrical system of coordinates 
and with the divergent form of writing the equation looks like 
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where i is the energy group number; r, z are cylindrical coordinates of a particle; 
( )ϕμ ,Ω  is a unit vector in the direction of a particle flight; θμ cos= , θ  andϕ  are the 

polar and azymuthal angles  ( πϕμ ≤≤≤≤− 0,11 ); ( )zrti ,,α , ( )zrtji ,,β  are particle 
absorption and multiplication factors; ( )zrti ,,υ  is velocity; ( )ϕμ,,,, zrtNi  is a flux of 
particles flying in the direction Ω ; ( )zrtQi ,, is an independent source of particles. 

An input flux of particles is specified on the outer surface at ( ) 0<⋅Ω n , where is 
the external normal. 

n
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The equation system (1) is solved iteratively in the integral of collisions. For 
simplicity, we’ll further consider the equation for one group with the known right-hand 
side (indexes of the iteration and group numbers are omitted).  

 
Approximation in Angular Variables and Time 

The way of constructing the angular and time approximations is similar to that 
described in the papers (Troshchiyev and Shumilin, 1986) and (Yelesin et al., 1972). 

The time derivative in Eq.1 is approximated in the following manner: 
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It is assumed, when approximating in time, that all quantities depending on r and z 
are specified at time ( ) ( )15.0,1 1 ≤≤⋅+⋅−= ++ γγγγ nnn ttt . 

The additional time correlation is inequality of the form  
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For variable ϕ , the following additional correlation is used: 

( ) ( )15.0,1 1,,1, ≤≤−+= −− ηηη qmqmqm NNN
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With regard to Eqs.2-4, Eq.1 within the ranges ( )qq ϕϕ ,1−  and with the specified 

value of mμ  is approximated by the following difference equation: 
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Approximation is Space 

A region of space is covered with polygons. Introduce the grid values of function 
( )ϕμ,,,, zrtN  on edges, N(к, к+1) and at the centers of polygons, N0. To construct the finite 

difference scheme, use the integro-interpolation method (Samarsky, 1977) and the 
method of additional correlations (Troshchiyev and Shumilin, 1986), (Yelesin et al., 
1972).  

Multiply Eq.5 by the phase volume component ϕddzdrr  and perform integration in 
a computational cell having the shape of a prism with a polygonal cell in its base (Fig.1). 
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Figure 1. Example of a computational cell with the grid values of function 
( )ϕμ,,,, zrtN . 

 
Use Gauss-Ostrogradsky formulation for integration on edges and then the “mean 

value” theorem and obtain 
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Here, k~  is the number of sides of a polygon,  ()1,( +kkN )1,~()1~,~( kkk NN ≡+ ) are the 

values of function ( )ϕμ,,,, zrtN  on lateral faces of the prism;  and  are the qN 1−qN
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where  is the computational cell area in plane ∫∫= drdzdS RZ ; s 

the cell volume component. 
∫∫=Δ drdzrV  i

Construction of additional correlations in space variables is an important phase of 
scheme construction on polygonal grids. It is required that with any direction mμ  and 

mq,ϕ , i.e. with any illumination variant, these correlations lead to a non-degenerate 

system of grid equations and at the same time provide a possibility to approximate the 
corresponding algebraic identities to the second order (or close to the second order) of 
accuracy.  

The difference scheme is built in two phases. During the first phase temporary values 
of the unknown function on the “non-illuminated” contour of a polygon and at its central 
point is to be determined by finding an approximate solution to the transport equation 
along characteristics. During the second phase the correction factor is to be found from 
the particle balance equation (Eq.6 ) in a cell and all the obtained values of the function 
are to be multiplied by this factor. 

Consider an example.  Fig.2 shows a convex polygonal cell. 
For the specified direction , the values of function NΩ (i,i+1) on the corresponding 

sides 1,1 −= ji are the known values in space variables.  

It is required to find 

• the values of function N0 at the cell center; 
• the values of function N(i,i+1) on its sides  nji ,= . 

To close the system of equations in the given cell for the given direction, use (n-(j-
1))+1 additional correlations in space.  

Let the solution at the center of the cell be a normal value of function N on all lateral 
sides: 
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We obtain the rest (n-(j-1)) additional correlations using the following assumptions. 
The solution along characteristics of the desired function at the centers of non-
illuminated1 sides can be written in the form 

( ) ( )( ) ( ) ( )nkjNdN kk
P

kkkk ≤≤⋅+= +++ 1,1,1, 1 , (9)

where   

d is the linear particle multiplication (adsorption) factor along the characteristic;   
 is the distance from the center of the non-illuminated side (k,k+1)  to its 

projection onto the illuminated contour of the polygon;  is the value of the 
function projection onto the illuminated

( 1, +kk )

)

)
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PN

2 contour of the polygon that can be obtained by 
linear interpolation of the corresponding node values of the side, to which the projection 
falls. For this purpose, on the illuminated contour of the polygon introduce the values of 
function ( ϕμ,,,, zrtN  at nodes of the cell  to our template.   

Construction of projections can be represented in the form shown in Fig.3. 
The «illuminated» side, which the projection from the center of the “non-illuminated” 

side falls onto, can be efficiently determined with regard to factors χ′  from Eq.7. 

As for calculation of parameter , note the following. Instead of a real length 
that can be calculated, for example, using the square root function, it is possible to use an 
increment along one of the coordinate axis.  

( 1, +kk )

                                                

Thus, the above-mentioned possibilities significantly reduce the labor-intensity of 
computations using this scheme. 
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Figure 2. Example of a convex n-gon. 
 

 

1 Sides for which the requirement of χk >0 is met. 
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Substitute Eq.8 and Eq.9 into Eq.6 and obtain the equation for calculation of 
parameter d for the cell of interest: 
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where is the sum over all non-illuminated sides; ∑
> 0χ

∑
< 0χ

is the sum over all 

illuminated sides; n  is the number of sides of a polygon. 
Upon calculation of the value of parameter , use Eq.9 to find all the desired values 

of the function at the centers of “non-illuminated” sides and then use Eq.8 to find the 
function values at the central point of the polygonal cell. 

d
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Figure 3.  Example of projections onto mid points of “non-illuminated” sides of a 

cell.  
We focus on the issues of construction of efficient algorithms for transformation of 

matrix of the algebraic equation system resultant from replacement of the differential 
equation in polygons by the difference equation into the triangular one (the so-called 
algorithms of regulating polygons in a region). 

Troshchiyev (1976) proved a feasibility of regulating convex polygons. In general, 
both convex and non-convex polygons can be the components of the spatial grid 
considered by this paper authors.  

Let a region contain several non-convex polygons. Find local sub-regions consisting 
of a non-convex polygon and its neighboring polygons. If we remove non-convex 
polygons from such sub-regions, for example, by geometric reconstructions, we can bring 
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the system of interest to the conditions of the theorem proved by Troshchiyev (1976) 
(Fig.4). 

Hence, if for each of the sub-regions with non-convex polygons (see Fig.5) we offer 
special regulating algorithms, the problem, as a whole, can be solved. 

Now consider issues of cost-efficiency of the regulating algorithms. 
 

 
Figure 4. Example of algorithms avoiding non-convex polygons   

 

Figure 5. Example of identification of local sub-regions with non-convex cells. 
Remember that for the chosen particle flight direction the transport equation can be 

solved numerically for those polygons, which have, at a current time, the known values 
of function ( )ϕμ,,,, zrtN on each of the illuminated sides. One can see that the procedure 
of finding the resolvable polygons can significantly increase the problem run-time.  

For irregular grids, a special polygon-regulating algorithm has been developed.  Data 
on cells having at least one illuminated side (edge) is entered into a stack; when a cell has 
been resolved, its data is removed from this stack. A particular cell checking for 
resolvability is reduced to this cell checking for equality to zero of one parameter. The 
proposed regulating algorithm is quite efficient and virtually doesn’t increase the total 
computation costs. 
 

Examples of Computations 
Problem 1.  Consider a cylinder with parameters 10 ≤≤ r , 20 ≤≤ z , 

0,1,25.2,34.1 ==== Qβ ρα . It is required to determine the eigenvalues of parameter λ , 
which is a constant of particle variation in time (Troshchiyev and Shumilin, 1986). 

Moskvin,A.N . and  Shumilin, V.A. 8
 



Proceedings from the 5LC 2005 

To solve the problem, spatial grids of two types were used: a rectangular grid and a 
spatial grid consisting of regular hexagons. 

Computations were carried out using refined spatial grids. The angular grids were 
varied to solve this problem. Computations were carried out with 6 (i.e. 24 particle flight 
directions), 12 (84 particle flight directions), 24 (312 particle flight directions), and 48 
(1200 particle flight directions) intervals in variable μ . 

Tables 1-2 give the values of parameterλ  depending on angular and space 
quadrangular grids in use. 

Let the values obtained for computation using a rectangular grid be the exact value of 
Тλ  for the specified number of intervals in variable μ : 

,2hanT +=λλ  where  is a linear size of a computational cell.  h

We have λ6

T
= 0.164755, λ12

T
= 0.152714, λ 24

T
 = 0.148885, λ 48

T
 = 0.147787.  

Table 3 gives the values of errors λλ −T  for all computations. 
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Table 1. The values of parameter λ  in computations using rectangular spatial 
grids. 

Size of cells in r Grid Number of 
intervals in 
variable μ  

h=0.1 cm h/2 h/4 h/8 

6 0.162753 0.164256 0.164631 0.164724 

12 0.150734 0.15222 0.15259 0.152683 

24 0.146903 0.148393 0.148762 0.148854 
Rectangular 

48 0.145817 0.147295 0.147664 0.147756 
 

 
Table 2. The values of parameter λ  in computations using hexagonal spatial 
grids. 

Size of cells in r (cm) Grid Number of 
intervals in 
variable μ  

=0.1 =0.07 =0.035 =0.0175 

6 0.16219 0.16407 0.16464 0.164835 

12 0.150546 0.152302 0.152821 0.15292 

24 0.146242 0.147957 0.148874 0.149012 
Hexagonal 

48 0.14480 0.145054 0.146106 0.147558 
 

 
Table 3. The obtained computational errors. 

Errors Grid Number of 
intervals in μ  λλ hT −  λλ 2hT − λλ 4hT −

 λλ 8hT −

6 0.002007 0.000504 0.000129 3.6E-05 

12 0.001976 0.00049 0.00012 2.7E-05 

24 0.001987 0.000497 0.000128 3.6E-05 
Rectangular 

48 0.001973 0.000495 0.000126 3.4E-05 
  λλ 1.0=− lT  λλ 07.0=− lT  λλ 035.0=− lT  λλ 0175.0=− lT  

6 0.00257 0.00069 0.00012 -7.5E-05 

12 0.002164 0.000408 -0.00011 -0.00021 

24 0.002648 0.000933 1.6E-05 -0.00012 
Hexagonal 

48 0.00299 0.002736 0.001684 0.000232 

Moskvin,A.N . and  Shumilin, V.A. 10
 



Proceedings from the 5LC 2005 

 
As one can see from Table 3 above, computations using rectangular grids provide 

convergence of at least the second order in space variables. Results of computations 
using hexagonal grids are close in accuracy to the results of computations using 
rectangular grids. 

Fig.6 shows graphical representation of parameter λ  for computations in angular and 
space variables. 

Problem 2.  The task is to calculate the values of parameter keff in four-group 
approximation (Buckel et al.,1977).  

Consider a horizontal section of the upper 3D half-reactor SNR-300 (Fig. 7). 
Materials: 1,2 – fissionable materials, 3 - reflector, 5,6 –control rods.  

Five spatial grids (Fg.8) of various kinds were used to solve the problem. 
All computations were carried out with 6 intervals in variable μ (24 directions of 

particle flights). Table 4 gives the results of these computations. 
As one can see from the Table 4 data, convergence in space variables has been 

achieved (the spatial grid used in computations was irregular). The results of 
computations by our code are in good agreement with the results presented in the paper 
(Buckel et al., 1977). 
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Figure 6. The curves of parameter λ  for computations in angular and space 
variables. 
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Figure 7. The problem 2 geometry. 

 
 

   
a) hexagonal grid b) grid L3 c) grid L12 d) grid L27 e) grid L48

Figure 8.  Components of space grids used to solve problem 2. 
 
 
 

Table 4. The values of parameter keff. 
 

  
Grid 
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kэфф

Hexagonal 1.13035 

L3 1.13171 

L12 1.13337 

L27 1.13362 

L48 1.13368 
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Conclusion 
The practice of computations with the techniques of the transport equation simulation 

using polygonal spatial grids demonstrated a high efficiency of these algorithms. This is 
especially true for problems of complex geometries having local small-scale sub-regions, 
where application of polygonal cells allows efficient grid construction.  
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