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This manuscript will present results from a study designed to measure the 
accuracy and efficacy (accuracy and efficiency considered 
simultaneously) for the solution of the nonequilibrium radiation diffusion 
equations on a suite of test problems.  Results will present time step 
convergence studies that will show accuracy versus time step size and 
efficacy studies that show accuracy versus computer time. Results will 
show that second order methods can achieve higher levels of accuracy 
than first order methods for the same amount of computer time.  The 
second order in time methods that are split and linearized are very 
efficient but they often have difficulties with robustness.  The second order 
in time method that solves all of the equations in a single system and 
iterates the nonlinear problem to convergence is consistently the most 
robust and is often the most accurate. 

Introduction  
The traditional method for time integration of the nonequilibrium radiation diffusion 

equations are first-order accurate in time (Olsen and Morel, 1999).  These methods rely 
on linearizations and operator splitting to simplify the linear algebra so small systems can 
be solved easily on the computer. A second more modern approach is to solve the 
nonlinear system in a single matrix that is large and complicated (Brown et al. 2005, 
Mousseau et al., 2000).  When employing this approach, it is trivial to make the time 
integration second-order accurate in time. The purpose of this manuscript is to investigate 
the middle ground between the first order in time split and linearized methods and the 
second order in time implicitly balanced (Knoll et al., 2003) methods.  Recent work by 
the authors (Mousseau and Knoll, 2005 and Rauenzahn et al. 2005) and work by other 
investigators (Ober and Shadid 2004, Ropp et al. 2004) have been studying second order 
in time split and linearized methods. 

Because of the speed with which results are appearing that relate to this work, many 
of the papers referenced in this manuscript have not been published.  Please feel free to 
contact the authors for a PDF file of any of the unpublished papers. 
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The rest of this manuscript has the following layout.  In the second section the 
mathematical model of nonequilibrium radiation diffusion is given.  This is followed by a 
brief discussion of accuracy concerns that are specific to the material energy capacitance.  
The fourth section describes the four solution methods that are employed in this study.  
This is followed by a short description of the time step control algorithm.  The sixth 
section describes the eight test problems that are used to evaluate the four solution 
methods.  The seventh section presents results from the studies and the final section gives 
concluding remarks. 

Mathematical Model 
This model consists of two equations, one for conservation of energy in the radiation 

field and one for conservation of energy in the material field.  The conservation of energy 
in the radiation field is given by, 

( )
44 b

r p
E TE cDt c

σρσ
∂ ⎛ ⎞

−∇ ⋅ ∇ = −⎜ ⎟∂ ⎝ ⎠
E .             [1] 

Here E is the radiation energy, T is the material temperature, c is the speed of light, bσ is 
the Stefan-Boltzmann constant, ρ is the material density, pσ is the Planck averaged cross 
section, and is the radiation diffusion coefficient.  The conservation of energy in the 
material is given by, 

rD

( )
44m b

m p
E TT cDt c

σρ ρσ
∂ ⎛ ⎞

−∇⋅ ∇ = − −⎜ ⎟∂ ⎝ ⎠
E .             [2] 

Here  is the material energy and  is the material conduction.  At this point it is 

convenient to define a radiation temperature 

mE mD
1/ 4

4r
b

cET σ
⎛= ⎜
⎝ ⎠

⎞⎟ , such that when the 

radiation temperature and the material temperature are equal, the problem is in 
equilibrium.  The Planck averaged cross section is modeled by, 

3
p

p
K z

T

γ

β

ρ
σ = .                 [3] 

Here z is the atomic number, , pK γ , and β  are input constants.  The radiation diffusion 
coefficient consists of two parts, the first is based on the mean free path of the photons 
and the second is a flux limiter designed to keep the energy flux slower than the speed of 
light in areas of high radiation energy gradients.  The radiation diffusion coefficient is 
given by, 

3
r

E
R E

c
D

ρσ
∇

=
+

,                [4]  

where the Rosseland opacity is given by, 
3

R
R

K z
T

γ

β

ρ
σ = ,                 [5] 

where  is an input constant.  The material conduction is given by, RK
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5/ 2

m m
TD K
zλ

= .                 [6] 

Here  and mK λ  are input constants.   
The material energy is given by three different forms depending on the test problem.  

The first form is for a Dimensional Saha Ionization (DSI) model. 

( )3 1
2m

p

kT
E

m
α αχ⎡= + +⎢⎣ ⎦

⎤
⎥                [7] 

Here k is the Boltzmann constant, is the mass of a proton,  pm
HI

kT
χ = ,                 [8] 

where HI  is the hydrogen ionization potential and α  is the ionization fraction given by, 
3/ 22

3/ 22

24
1

p e Hm m I e
h

χπα
α ρ χ

−⎛ ⎞= ⎜ ⎟− ⎝ ⎠
.              [9] 

Here,  is the mass of an electron and h is Planck’s constant.   em
The second form of the material energy is for the Nondimensional Simplified Saha 

Ionization (NSSI) model where, 
( )1 0.mE T 3α α= + + ,              [10] 

where, 
2

0.3/

1
Teα

α
−=

−
.               [11] 

The third form is for the Constant Specific Heat (CSH) model where, 
m vc TE = .               [12] 

Here  is the constant specific heat. vc
 

To be consistent with previous work (Mousseau and Knoll, 2005, Rauenzahn et al., 
2005, Mousseau and Knoll, 2003, Mousseau et al., 2000, Knoll et al. 1999, Szilard and 
Pomraning, 1992) the equations will be nondimensionalized for some of the test 

problems. In this nondimensionalization, 1cρ = = , 1
4bσ = , and R p aσ σ σ= = .  With this 

nondimensionalization the radiation energy equation becomes, 

( ) ( 4
r a

E E TDt σ
∂

−∇ ⋅ ∇ = −
∂

)E ,            [13] 

and the material energy equation becomes, 

( ) ( 4m
m a

E T TDt σ
∂

−∇ ⋅ ∇ = − −
∂

)E .            [14] 

Accuracy of the Material Energy Capacitance 
If one couples the solution of the nonequilibrium radiation diffusion equations to a 

solution of the fluid motion in the material, the resulting system is a large, tightly 
coupled, system of nonlinear equations.  Since we are only now beginning to have the 
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computer capacity and the algorithmic efficiency to solve this as a single nonlinear 
system, traditional solution methods have had to rely on linearizations and operator 
splitting to make the solution tractable on existing computers with mainstream 
algorithms.  It is important to analyze the trade-off between computational speed and 
accuracy when these simplifications (linearizing and operator splitting) are made.  This 
analysis will focus only on the heat capacitance term in the material energy equation 
which is given by 

1 1n nn n
mmE E

t t
ρ ρ ρ+ +∂ −

≈
∂ ∆

mE

T

             [15] 

The material energy is given as  

0

T

m v
T

E c d= ∫ ,               [16] 

where  is a reference temperature and  0T

m
v

Ec
T

∂
=
∂

.               [17] 

To simplify this discussion we will assume that the material density is a constant that is 
equal to one, but one should keep in mind the additional accuracy concerns when the 
material density is computed from the fluid equations. Doing a three term Taylor series 
expansion of our simplified discrete material energy capacitance term yields, 

( ) ( ) ( )2 31 12 31

2 32 6

n n n n n nn n
m m m m m

n n n

T T T T T TE E EE E
t T t T t T t

+ ++ − −− ∂ ∂ ∂
≈ + +

∆ ∂ ∆ ∂ ∆ ∂ ∆

1+ −
.       [18] 

Recalling Eq. 17, Eq. 18 can be rewritten as 

( ) ( ) ( )2 31 1 21

22 6

n n n n n nn n
m m n v v

v
n n

T T T T T Tc cE E c
t t T t T

+ + ++ − −− ∂ ∂
≈ + +

∆ ∆ ∂ ∆ ∂ ∆

1

t
−

        [19] 

Now from Eq. 19 one can clearly see the error that is made if one makes the standard 
assumption that specific heat is a constant over the time step.  When assuming specific 
heat is a constant over the time step, the material energy heat capacitance term is written 
as 

( )1n n
nm
v

T TE c
t t

+ −∂
≈

∂ ∆
 .             [20] 

If the specific heat is a constant, then this form is accurate since the second and third term 
on the right hand side of Eq. 19 are zero.  If the specific heat is linear in temperature then 
the second term on the right hand side of Eq. 19 is the error and the third term is zero.  
When one considers a change in specific heat due to ionization, such as the Saha models 
of Eq.s 7-11, the specific heat is a nonlinear function of temperature and the error 

coefficient, v

n

c
T
∂
∂

, may be very large.  Therefore, if one includes an ionization model in 

the nonequilibrium radiation diffusion equations, care should be taken when assuming the 
specific heat is a constant over the time step. 
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Solution Methods 
Results will be presented from four different solution methods in this study.  Three of 

the solution methods have been presented in detail in previous work (Mousseau and 
Knoll, 2005, Rauenzahn et al. 2005) so their description will be brief in this manuscript.  
The fourth solution method is new and will therefore be presented in detail. 

Second Order in Time Newton-Krylov (NK2) 
The Newton-Krylov method (Chan and Jackson, 1984, Brown and Saad, 1990) is a 

popular modern algorithm that has been applied to many applications (Knoll and Keyes, 
2004).  The method is described in detail in (Mousseau and Knoll, 2005, Rauenzahn et al. 
2005) where it is called the 2NSNL algorithm.  This name is derived from the fact that 
the method is second order in time [2], contains no operator splitting [NS], and contains 
no linearizations [NL]. The basic outline of the method is to discretize Eq. 1 and Eq. 2 in 
space and time resulting in a nonlinear system of equations.  This nonlinear system of 
equations is solved using Newton’s method and the resulting linear equations on each 
Newton iteration are solved with a Krylov linear solver. This method is second order 
accurate and robust but the solution of the large nonlinear system is the drawback.  The 
efficiency of this method is heavily impacted by the preconditioning strategy (Mousseau 
and Knoll, 2003, Brown and Woodward, 2001, Mousseau et al., 2000). 

Second Order in Time Strang-Rosenbrock (SR) 
This method is related to other second order methods that contain operator splitting 

and linearizations discussed in (Ober and Shadid, 2004).  The method is described in 
detail in (Mousseau and Knoll, 2005, Rauenzahn et al. 2005) where it is referred to as the 
2SL (second order in time, split and linearized) method. This method combines early 
work by Strang (1968) and a time integration method called a 1-stage Rosenbrock 
method (Hairer and Wanner, 1996).  The basic idea is to split the nonlinear reaction  
(opacity coupling) from the nonlinear diffusion (radiation diffusion and material 
conduction).  The first step is a solution of the two nonlinear diffusion problems 
(radiation and material) for a half a time step.  A single step of Newton’s method is used 
to solve the nonlinear problems (1-stage Rosenbrock method).  The nonlinear reaction is 
then solved on a full time step followed by a second nonlinear half step of the two 
diffusion operators. 

First Order in Time Olson Splitting (OS1) 
This is a traditional algorithm (Olson and Morel, 1999) for solving the 

nonequilibrium radiation diffusion equations.  The algorithm is described in detail in 
(Mousseau and Knoll, 2005) where it is call 1SL (first order in time, operator split, and 
linearized).  It is also described in (Rauenzahn et al., 2005) where it is referred to as 
1NSL (first order in time, no operator splitting, and linearized).  The reason for this 
difference in naming is because the material conduction, which is the operator split part 
in this algorithm, is turned off in the applications in (Rauenzahn et al., 2005). 
The basic idea of this approach is to recognize that if the material conduction is operator 
split into its own solve, then the material energy and the radiation energy can be 
combined into a single matrix after the equations have been appropriately linearized.  
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This method then solves the radiation diffusion, the radiation coupling, and the material 
coupling, in a single matrix.  The solution of this matrix provides the new time radiation 
energy.  The material conduction is then solved as a separate system and this results in 
the new time material temperature. 

Second Order in Time Olson Splitting (OS2) 
The motivation for this algorithm is based off studies of the behavior of the three 

previous algorithms, second order in time Newton-Krylov (NK2), second order in time 
Strang-Rosenbrock (SR), and first order in time Olson splitting (OS1).  During 
investigations of the SR algorithm it was discovered that for certain test problems the 
splitting of the diffusion and the reaction (coupling) terms resulting in large errors (Ropp 
and Shadid, 2005).  These types of errors did not occur in the NK2 solution where there 
was no linearizing or operator splitting.  However, the OS1 solution method, although it 
had a large first order in time error, ran these problems without difficulty.  So we began 
to construct a method that was second order accurate in time that maintained the tight 
coupling between the radiation diffusion and the source coupling to the material energy. 
The basic outline of this solution method is to use Strang splitting to separate the material 
conduction from the material reaction and the radiation diffusion and reaction.  We then 
replaced the first order linearizations in OS1 with second order linearizations.  The details 
of the algorithm follow. 

The first step is to solve the discrete nonlinear material energy equation with the 
opacity set to zero for a half of time step. 

( ) ( )
*

**1 1 0
/ 2 2 2

n
m m nn

m m
E E T TD Dt

ρ −
− ∇ ⋅ ∇ − ∇⋅ ∇ =

∆
              [21] 

Recalling Eq. 6, for material diffusion and Equations 7-12 for material energy this is a 
nonlinear parabolic equation.  Equation 21 is solved for  using a 1-stage Rosenbrock 
method with the linear GMRES (Saad and Schultz, 1986) Krylov solver employing the 
Jacobian-free approximation (Brown and Hindmarsh, 1986).  

*T

Now consider the Crank-Nicolson time integration of the discrete material energy 
equation with the material conduction set to zero. 

( ) ( )4 4** *~ *
1~ *

4 41 1 0
2 2

b bm m n nlin
p p

T TE E c E c
t c c

σ σ
ρ ρ ρσ σ+

⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟+ − +
⎜ ⎟ ⎜ ⎟∆

⎝ ⎠⎝ ⎠

E− =        [22] 

Here, 
** *~ *

*
p p T T

T
σ

σ σ
∂ ⎡= + −⎣∂

⎤⎦ ,             [23] 

where 
*T

σ∂
∂

is computed numerically and, 

2** * ** **~ *

*

1
2

v
m m v

cT T T TcE E T
∂⎡ ⎤ ⎡ ⎤= + − + −⎣ ⎦ ⎣ ⎦∂

 ,          [24] 
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with  and *
vc

*

vc
T
∂
∂

computed analytically.  The fourth power of the material temperature is 

linearized by the following equation. 

( ) ( ) ( )4 4 3** * * ** *4
lin

T T T T T⎡= + −⎣ ⎤⎦             [25] 

Substituting Equations 23-25 into Eq. 22 results in a quadratic equation in . ** *T T⎡ ⎤−⎣ ⎦
The solution to this quadratic equation is given by, 

2
** * 4

2
b b acT T

a
− + −⎡ ⎤− =⎣ ⎦ ,             [26] 

where, 

( )3*

* *

8
2

v
b

ca
t T T

ρ σρσ∂ ∂
= +

∆ ∂ ∂
T ,            [27] 

( ) ( )
* 3 4* **

* *

8 2
2

nv
pb b

ccb T T
t T

ρ σρσ ρσσ 1E
T

ρ σ +∂ ∂
= + + −

∆ ∂ ∂
,         [28] 

( ) (4* 1* *4
2

n
p pb

cc T E )nEρρσ σ σ += − + .           [29] 

 
The intermediate material temperature from Eq. 26 is then substituted into the 
radiation energy equation, 

**T

( ) ( )

( ) ( )

4**1
1 1**1,**

4

41
2

41 0
2

n n
bn nn lin

r p

n
bn nnn

r p

TE E E c EDt c
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E c ED c

σ
ρσ

σ
ρσ

+
+ ++

⎧ ⎫⎛ ⎞− ⎪ ⎪⎜ ⎟− ∇ ⋅ ∇ + −⎨ ⎬⎜ ⎟∆ ⎪ ⎪⎝ ⎠⎩ ⎭
⎧ ⎫⎛ ⎞
⎪ ⎪⎜ ⎟− ∇ ⋅ ∇ + − =⎨ ⎬⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

,        [30] 

which is then solved by a Jacobian-free 1-Stage Rosenbrock method for .  Here, 1nE +

1

1

1,**

**3
n

n

n
r

E
R E

c
D

ρσ
+

+

+

∇
=

+
,             [31] 

where, 

( )
3

**

**

R
R

K z
T

γ

β
ρ

σ = ,              [32] 

and, 

( )
3

**

**

p
p

K z
T

γ

β

ρ
σ = .              [33] 

Given the value of  from the solution of Eq. 30, we then compute  from Eq. 26.   
With the intermediate value for material temperature, we now complete the time step 
with the final half time step of material conduction. 

1nE + **T

Mousseau, V.A. et al. 

 

7



Proceedings from the 5LC 2005 

( ) ( )
1 **

1 *1 **1 1 0
/ 2 2 2

n
m m nn

m m
E E T TD Dt

ρ
+

++−
− ∇ ⋅ ∇ − ∇⋅ ∇ =

∆
*           [34] 

Again, similar to the first half step, this equation is solved with a Jacobian-free 
implementation of a 1-stage Rosenbrock method. 

Time Step Control 
The time step control algorithm employed for this study is based on the idea of 

dynamical time scale [see section 4 of (Mousseau and Knoll, 2005)]. The time step 
control algorithm is given by, 

( ) ( ){ }1 1 1

,
min 1.05 , min , , ,n n n n

r mt i j
t t i j i jη τ τ+ + +∆ = ∆ × ⎡⎣ ⎤⎦ ,          [35] 

where tη  is an input number for the fraction of the dynamical time step, the multiplier of 
1.05 on the old time step prevents the time step from growing too rapidly, and the 
radiation dynamical time step, rτ , and the material dynamical time step, mτ , are given by, 

( )1
1

, ,
1

,

1,
1

n
r n n

i j i j
nn

i j

i j
E E

tE

τ +
+

+

=
−
∆

,             [36] 

and, 

( )1
1

, ,
1

,

1,
1

n
m n n

i j i j
nn

i j

i j
T T

tT

τ +
+

+

=
−
∆

.             [37] 

Test Problems 
Results will be presented for the four solution methods on eight different test 

problems that are chosen to exercise different aspects of the physics and solution of the 
nonequilibrium radiation diffusion equations. 

Nondimensional Constant Specific Heat (NCSH) 
Recall for the nondimensional problems with constant specific heat, 1cρ = = , 

1
4bσ = , R p aσ σ σ= = , and . mE T=

 
Table 1.  Input parameters for the nondimensional constant specific heat test 
problems 

Parameter Kp KR Km γ  β  λ  

       
Value 1 1 10-2 0 3 0 
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2-D Blast NCSH 
The 2-D Blast NCSH problem is solved on a square domain of length one on each 

side, [ ] [ ]( 0,1 , 0,1x y∈ ∈ ) .  This problem is solved on a 64 64× grid with uniform spacing 
and square control volumes, x y∆ = ∆ . The value of the atomic number, z is equal to one 

except in the two obstacles, 3 7 9 13, , ,
16 16 16 16

x y⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
 and 

9 13 3 7, , ,
16 16 16 16

x y⎛ ⎡ ⎤ ⎡∈ ∈⎜ ⎢ ⎥ ⎢⎣ ⎦ ⎣ ⎦⎝ ⎠

⎞⎤
⎟⎥ , where the atomic number is ten.  All four walls are 

insulated with respect to material conduction 
0 1 0 1

0m m m m

x x y y

E E E E
x x y y= = = =

⎛ ⎞∂ ∂ ∂ ∂
= = = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 

and radiation diffusion 
0 1 0 1

0
x x y y

E E E E
x x y y= = = =

⎛ ⎞∂ ∂ ∂ ∂
= = = =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

.  The initial radiation 

energy is given by, 

( )
2

3 2
110 10 exp

10
rE r −
−

⎡ ⎤⎛ ⎞= + −⎢ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

⎥ ,            [38] 

where 2r x y= + 2 . The material temperature is initialized in equilibrium, .  
The transient is run to a final time of 

1/ 4T E=
3t = .  For more details of this test problem see 

section 5.1.1 of (Mousseau and Knoll, 2005).  The radiation temperature at the final time 
is shown in Fig. 1. 

 
Figure 1. Contours of radiation temperature for the 2-D Blast NCSH problem. 
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2-D Marshak NCSH 
The 2-D Marshal NCSH problem is solved on a rectangular domain 
[ ] [ ]( 0,2 , 0,1x y∈ ∈ )  with a uniform spaced 64 32× grid.  The atomic number, z, is set to 

one except for in the two obstacles, 3 13 3 13, , ,
16 16 16 16

x y⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
 and 

19 29 3 13, , ,
16 16 16 16

x y⎛ ⎡ ⎤ ⎡∈ ∈⎜ ⎢ ⎥ ⎢⎣ ⎦ ⎣⎝ ⎠

⎞⎤
⎟⎥⎦

, where the atomic number is 1.5.  All four walls are 

insulated with respect to material conduction and three of the four walls are insulated 
with respect to radiation diffusion.  On the fourth wall the value of radiation energy is 
fixed at 

0
5

x
E

=
= .  The initial radiation energy is 310E −=  and the material temperature is 

initialized in equilibrium.  The transient is run to a final time of 3t = . For more details 
see section 5.1.2 of (Mousseau and Knoll, 2005). The radiation temperature at the final 
time is shown in Fig. 2. 

 
Figure 2. Contours of radiation temperature for the 2-D Marshak NCSH problem. 

Dimensional Constant Specific Heat (DCSH) 
 

Table 2.  Input parameters for the dimensional constant specific heat test problem 

Parameter β  γ  KR Kp ρ low cv,low

       
Value 3 0 1.558x1020 

m2K3/kg 
1.558x1020m2

K3/kg 
102 

kg/m3
8.6725x103 

J/kgK 

Parameter λ  Km  c bσ  highρ  cv,high

Mousseau, V.A. et al. 
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Value 0 0 3.0x108m/s 1.381x10-23 
J/K 

103 
kg/m3

8.6725x103 
J/kgK 

 
 

2-D Pipe DCSH 
The 2-D pipe DCSH problem is solved on a rectangular domain, 

( )2 20.0 ,7.0 10 , 0.0 ,2.0 10x m m y m m−⎡ ⎤ ⎡∈ × ∈ ×⎣ ⎦ ⎣ 224 64− ⎤⎦ , on a × grid.  In the pipe wall 

( )2 30.0 ,7.0 10 , 5.0 10 ,2.0 10 2x m m y m− −⎡ ⎤ ⎡∈ × ∈ × ×⎣ ⎦ ⎣ m− ⎤⎦  both the density and specific heat 

are ten times higher. In the pipe ( )2 30.0 ,7.0 10 , 0.0 ,5.0 10x m m y m− − m⎡ ⎤ ⎡ ⎤∈ × ∈ ×⎣ ⎦ ⎣ ⎦  both 

the density and specific heat are ten times lower. The atomic number is one, the initial 

radiation energy is 9
3

J1.37 10
m

× , and the material temperature is in equilibrium, 

. The boundary conditions are insulated with respect to radiation 
diffusion (note material conduction is off in this test problem) except for the inflow of the 
pipe 

71.16 10T = × K

( )30.0 , 0.0 ,5.0 10x m y m m−⎡ ⎤= ∈ ×⎣ ⎦  where 

13
3

0

2 1 J2.732 10
3 mxR

EE
xρσ =

∂
− = ×

∂
            [39] 

The final time of the simulation is at t = 4.0 ns. For more details on this test problem see 
section “Comparisons of Parallel Solvers” in (Carrington and Mousseau, 2005).  The 
radiation temperature at the final time is shown in Fig. 3. 

 
Figure 3. Radiation temperature Contours for the 2-D Pipe DCSH Problem. 
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Nondimensional Simplified Saha Ionization (NSSI) 
Recall for the nondimensional problems with constant specific heat, 1cρ = = , 

1
4bσ = , and R p aσ σ σ= = . Here ( )1 0.mE T 3α α= + + , where,

2
0.3/

1
Teα

α
−=

−
. 

 
Table 3.  Input parameters for the nondimensional simplified Saha test problems 

Parameter Kp KR Km γ  β  λ  

       
Value 1 1 0 1 3 0 

 
 

1-D Marshak (NSSI) 
For this test problem the domain is given by [ ]0,1x∈  and it is discretized with 100 

control volumes that are uniformly spaced.  The right boundary is insulated with respect 

to radiation energy 
1

0
x

E
x =

∂
=

∂
 and the left boundary is a Robin boundary 

0

2 1 4.0
3 xR

EE
xρσ =

∂
−

∂
= (note that there is no material conduction).  The atomic number z 

is one, the initial radiation energy is set 31.0 10E −= × , and the material temperature is 
initialized to equilibrium.  The final time for the transient is t = 3.  For more details see 
section 5.1 of (Rauenzahn et al., 2005). The material and radiation temperature at the 
final time are shown in Fig. 4. 
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Figure 4. Final temperature values for the 1-D Marshak NSSI problem. 
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1-D Blast (NSSI) 
This problem also has 100 uniformly spaced control volumes on the domain 
[ ]0,1x∈ .  For this test problem both ends of the domain are insulated.  The initial 

radiation energy is given by, 
 

2
3 2

210 10 exp
10

xE −
−

⎡
= + −⎢

⎣ ⎦

⎤
⎥ .             [40] 

The material temperature is initialized in equilibrium.  The final time of the simulation is 
t = 1.  For more detail see section 5.2 of (Rauenzahn et al. 2005). The final temperature 
values are shown in Fig. 5. 

 
Figure 5. Temperature versus distance for the 1-D Blast NSSI problem. 
 

Dimensional Saha Ionization (DSI) 
 

Table 4.  Input parameters for the dimensional Saha ionization test problem 

Parameter γ  ρ  KR Kp k 

      
Value 1 1.17x10-3 kg/m3 7.44x1018 

m5K7/2/kg2
2.33x1020 
m5K7/kg2

1.381x10-23 
J/K 

Parameter λ  mp c bσ  me

Mousseau, V.A. et al. 
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Value 0 1.673x10-27 kg 3.0x108 m/s 6.67x10-8 
W/m2K4

9.109x10-31 
kg 

Parameter β  HI  h   

Value 7
2

 
2.179x10-18 J 6.626x10-34 Js   

 
 

1-D Marshak DSI 
The domain is discretized by 100 uniformly spaced control volumes over a domain 
[ ]0.0 ,5.0x m m∈ .  Material conduction is turned off, 0mK = , and the right end of the 

domain is insulated with respect to radiation energy, 
5.0

0
x m

E
x =

∂
=

∂
.  The left side of the 

domain is set with a Robin boundary given by, 
6

3
0

2 1 J7.503 10
3 mxR

EE
xρσ =

∂
− = ×

∂
.            [41] 

The radiation energy is initialized to 3
3

J7.56 10
m

E −= ×  which is in equilibrium with the 

material temperature . The final time for this problem is 31.778 10T = × K s4t µ= .  For 
more details on this problem see section 5.3 of (Rauenzahn et al. 2005) noting that the 
initial radiation energy and the initial material temperature is lower in this test problem. 
The final values for temperature are shown in Fig. 6. 

 
Figure 6. Temperature versus distance for the 1-D Marshak DSI problem. 
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2-D Blast DSI 
The dimensional 2-D blast DSI problem with a Saha ionization model is similar to the 

2-D blast that is nondimensional and has a constant specific heat. The square domain 
[ ] [ ]( 0.0 ,1.0 , 0.0 ,1.0 )x m m y m m∈ ∈ is discretized on a 64 64× grid with uniform spacing. 

The value of the atomic number z is equal to one except in the two obstacles, 
3 7 9 13, , ,

16 16 16 16
x m m y m m⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

 and 9 13 3 7, , ,
16 16 16 16

x m m y m m⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
, where the 

atomic number is ten.  All four walls are insulated with respect to material conduction 
and radiation diffusion.  The initial radiation energy is given by, 

( )
2

3 7
1 3

J7.56 10 7.5033 10 exp
10 m

rE r −
−

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= × + × −⎢ ⎥⎨ ⎬⎜ ⎟
⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

,         [42] 

 
where 2r x y= + 2 . The material temperature is initialized to the same value everywhere 

(note this is in contrast to the 2-D Blast NCSH where the material 
temperature was initialized in equilibrium with the radiation energy).  The material 
conduction is given by, 

31.778 10 KT = ×

5/ 2
11 W1.2 10

mKm
TD z

−⎡
= ×⎢
⎣ ⎦

⎤
⎥              [43] 

which is Eq. 6 with 11
7 / 2

W1.2 10
mKmK −= ×  and 1λ = . The transient is run to a final time 

of .  A contour plot of the final radiation temperature is shown in Fig. 7. 5t n= s

 
Figure 7. Radiation temperature contours for the 2-D Blast DSI problem. 
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2-D Marshak DSI 
The dimensional 2-D Marshak DSI problem with a Saha ionization model is similar 

to the nondimensional 2-D Marshak problem with constant specific heat. The problem is 
solved on the domain, [ ] [ ]( )0.0 ,2.0 , 0.0 ,1.0x m m y m m∈ ∈ discretized with a grid.  
The atomic number, z, is set to one except for two obstacles, 

64 32×

3 13 3 13, , ,
16 16 16 16

x m m y m m⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠
 and 19 29 3 13, , ,

16 16 16 16
x m m y m m⎛ ⎞⎡ ⎤ ⎡ ⎤∈ ∈⎜ ⎟⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠

, where 

the atomic number is 1.5.  All four walls are insulated with respect to material conduction 
and three of the four walls are insulated with respect to radiation diffusion.  On the fourth 
wall is a Robin boundary condition given by, 

3
3

0

2 1 J7.5033 10
3 mxR

EE
xρσ =

∂
− = ×

∂
       [44] 

The initial radiation energy is 3
3

J7.56 10
m

E −= ×  and the material temperature is 

initialized in equilibrium .  Equation 43 also describes the material 
conduction for this test problem. The transient is run to a final time of . The 
final time radiation temperature is shown in Fig. 8. 

31.778 10 KT = ×
800t = ns

 

 
Figure 8.  Contours of radiation temperature for the 2-D Marshak DSI problem. 

Results 
Results will be presented for the four solution methods (if they ran and produced 

reasonable answers) on the eight test problems.  For the 2-D test problems results will be 
shown for both the accuracy and the efficacy of the four solution methods.  The accuracy 
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plots will have error on the Y-axis and the fraction of the dynamical time step ( tη  from 
Eq. 35) on the X-axis.  The efficacy plots will contain the error on the Y-axis and the 
CPU time on the X-axis.  A horizontal line on an efficacy plot answers the question, 
“Which solution method achieves the desired level of accuracy in the smallest amount of 
CPU time?”  A vertical line on an efficacy plot answers the question, “Which solution 
method provides the most accurate solution in the fixed amount of CPU time?”  Because 
of their ability to answer these two important questions quickly, efficacy plots are very 
useful for comparing different solution algorithms. 

For the 1-D test problems only accuracy results will be presented.  Because of the 
short amount of CPU time for 1-D problems and the ability to have highly optimized 
matrix solvers (such as the Thomas algorithm for tridiagonal systems) it is difficult to 
make useful statements about efficacy in one dimension. 

Accuracy 
Because of the complexity of the test problems chosen for this study, it is very 

difficult to obtain analytical solutions.  Instead of an exact solution, accuracy will be 
computed from a “base” solution.  The “base” solution will be computed using the 
second order in time Newton-Krylov method using a dynamical time step ten times 

smaller than the smallest value plotted ( 1
320tη =  in Eq. 35 for the 2-D problems and 

 in the 1-D problems).  From the base solution the values of radiation 
temperature, 

310tη
−=

1
4

4r
b

cET
σ

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

,               [45]  

 are extracted.  The error is then computed from, 

( ) ( ) 2

1 1

, ,
nynx

base
rr

i j

Error T i j i jT
= =

= −⎡⎣∑∑ ⎤⎦ .           [46] 

 

2-D Blast NCSH 
The first test problem is the Nondimensional Constant Specific Heat (NCSH) version of 
the 2-D Blast problem.  Results are shown in Fig. 9.  Here one can see that the all of the 
second order in time methods are significantly more accurate than first order in time 
Olson Splitting (OS1) method.  The Strang-Rosenbrock (SR) method is the most accurate 
but it was not robust enough to produce a solution at a dynamical time step of one half.  
The second order in time Newton-Krylov (NK2) method produces a robust and accurate 
second order in time solution.  The second order in time Olson Split (OS2) method is 
significantly more accurate than the OS1 method but less accurate than the other second 
order methods.  It appears that for small time steps that the OS2 method is incurring a 
first order in time error.  

Figure 10 shows the efficacy plot for the same test problem. From this plot one can 
see that for a CPU time greater than 500 seconds or an error below one tenth the second 
order in time methods are clearly better than OS1.  Considering robustness and efficacy 

Mousseau, V.A. et al. 

 

17



Proceedings from the 5LC 2005 

together, the OS2 method appears to be a good choice for errors in the range 10-1 to 10-3.  
For errors below 10-3 the SR method appears to be the most efficacious. 

 
Figure 9.  Error versus dynamical time step for the 2-D Blast NCSH problem. 

 
Figure 10.  Error versus CPU time for the 2-D Blast NCSH problem. 

2-D Marshak NCSH 
The nondimensional 2-D Marshak wave problem with constant specific heat is the 

second test problem.  The accuracy results are shown in Fig. 11.  Here one can see the 
large error in the OS1 method, the well-behaved second order convergence of the OS2 
and NK2 methods, and the odd behavior of the SR method.  The apparent asymptotic 
behavior of the SR method is a function of spatial errors influencing the temporal 
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convergence of the method.  Under mesh refinement the SR method produces 
convergence plots similar to OS2 and NK2.  
 

 
Figure 11. Error versus dynamical time step for the 2-D Marshak NCSH Problem. 
 

Figure 12 shows the efficacy plot for this test problem.  Here one can see that the SR 
method is the most efficacious for smaller errors.  The OS2 method is the second most 
efficacious with NK2 the least efficacious of the second order methods.  The OS1 method 
is the most efficacious for problems of large error and fast CPU time.  This quality makes 
the OS1 method ideal for scoping studies. 

 
Figure 12.  Error versus CPU time for the 2-D Marshak NCSH problem. 
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2-D Pipe DCSH 
The accuracy results for the dimensional 2-D pipe with constant specific heat are 
presented in Fig.13.  The first thing that one notices for this test problem is the lack of SR 
results.  For this test problem the SR solution would not run any of the time steps except 
for the smallest value of dynamical time scale ( 1/ 32tη =  from Eq. 35).  This single point 
was not included on the plot.  The OS1 solution has a large first order error and the NK2 
solution has a small second order error.  The OS2 error for large time steps, 1/ 2tη = , is 
as large as the OS1 error, but as the time step is made smaller, the OS2 solution 
converges to its second order slope.   

 

 
Figure 13.  Error versus Dynamical time step of the 2-D pipe DCSH problem. 
 
The efficacy plot for this test problem is shown in Fig. 14.  Here one can see that the 
large errors in the OS2 solution at large time steps have had a negative impact on its 
efficacy.  But at smaller time steps and tighter error tolerances the OS2 solution is the 
most efficacious. 

1-D Blast NSSI 
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Figure 15 shows the accuracy time step convergence study for the nondimensional 1-
D Blast with a simplified Saha ionization model.  For this test problem OS1 has a large 
first order error and all of the second order methods have approximately the same error.  
An observation can be made here that will require further investigation.  In all of the 
previous problems that have had a constant specific heat the NK2 solution had an error at 
the smallest time step that was approximately two orders of magnitude smaller than the 
OS1 solution.  For this test problem, and all of the following test problems where some 
form of a Saha ionization model has been employed, the ratio of the error between OS1 
and NK2 at the smallest time step is approximately three orders of magnitude.  This 
effect may be due to the fact that the truncation error in the OS1 method, which assumes 
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that the specific heat is constant over a time step (recall Eq. 19), scales like v

n

c
T

∂
∂

.  At the 

ionization temperature, the derivative of specific heat with respect to temperature is large 
in the Saha models. 
 

 
Figure 14.  Error versus CPU time for the 2-D pipe DCSH problem. 

 
Figure 15. Error versus dynamical time step for the 1-D Blast NSSI problem. 
 

1-D Marshak NSSI 
Figure 16 shows the accuracy plot for the nondimensional 1-D Marshak wave 

problem with a simplified Saha ionization model.  What one notices in this plot is the 
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strange convergence behavior of the OS2 solution method.  Similar to the strange 
convergence behavior of the SR solution in Fig. 11, this appears to be a function of the 
spatial resolution.  The effect of spatial truncation errors affecting the temporal 
convergence of solutions methods is discussed in some detail in (Lowrie, 2004) and is a 
topic of future investigation. 

 
Figure 16. Error versus dynamical time step for the 1-D Marshak NSSI problem. 
 

1-D Marshak DSI 
Figure 17 presents the time step convergence of the dimensional 1-D Marshak wave 

problem with a Saha ionization model. Although the shape of the OS2 convergence plot 
is unexpected, the error in the OS2 method is significantly smaller than the OS1 method 
and larger than the NK2 method, which is the range that one would expect. 

In all of the dimensional test problems with a Saha ionization model (Fig.s 17-21) 
there are no SR results.  This solution method was unable to provide a robust solution to 
these test problems at the choice of dynamical time scale being studied.  It should be 
noted that the SR solution method would run at smaller time step sizes. 

2-D Blast DSI 
The time step convergence plot for the Dimensional 2-D Blast problem with a Saha 
ionization model is shown in Fig. 18.  For this problem we see OS2 and NK2 providing 
significantly more accurate solutions than OS1.  One should note that the OS2 solution 
had difficulties running at a dynamical time scale of one half. 

Figure 19 shows the efficacy plot for this test problem.   For this test problem that 
includes a more complete test of the nonequilibrium radiation diffusion physics, 

(1) Saha ionization model 
(2) Obstacles of different materials 
(3) Material conduction 
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The efficacy of OS2 and NK2 are significantly better than OS1.  For any CPU time above 
approximately 3000 CPU seconds, the OS2 and NK2 solution methods provide 
significantly more accurate solutions for the same CPU cost.  In addition it is interesting 
to note that as the nonlinearity of the test problem increases the NK2 solution, which 
contains no operator splitting and no linearizations, becomes more accurate and more 
efficacious (note that this is the first test problem where the NK2 method is the most 
efficacious).   

 
Figure 17.  Error versus Dynamical time scale for the 1-D Marshak DSI problem. 
 
 
 

 
Figure 18.  Error versus Dynamical time scale for the 2-D Blast DSI problem. 
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Figure 19. Error versus CPU time for the 2-D Blast DSI problem. 
 

2-D Marshak DSI 
The final test problem is the dimensional 2-D Marshak wave with a Saha ionization 

model.  The time step convergence results for this problem are shown in Fig. 20.  Again 
the OS2 and NK2 methods (SR was not robust enough to run the test problems) provide 
solutions that are significantly more accurate than the OS1 method.  It is interesting to 
note that one possible source for the increased accuracy of the OS2 method is the second 
order accurate linearization of material energy in Eq. 24.  From Eq. 24 and Eq. 19 one 

can see that the error in the material energy capacitance is proportional to 
2

2
v

n

c
T
∂
∂

and not 

v

n

c
T
∂
∂

as in the OS1 solution. It should be noted that the Rosenbrock linearization 

employed in Eq. 21 and Eq. 34 does have an error that scales like v

n

c
T
∂
∂

but it appears that 

the change in material temperature during Eq. 21 and Eq. 34 is smaller than the change in 
material temperature during Eq. 22 because the time scale of energy equilibrium between 
the material and radiation is faster than the material conduction time scale. More detailed 
analysis is left for future research. 

Figure 21 shows the efficacy plot for this test problem. Again the OS2 solution 
provides significantly more accurate solutions for CPU times greater than 2000 CPU 
seconds.  The OS2 method becomes first order in time due to the Rosenbrock 
linearization of Eq. 21 and Eq. 34 and this costs the OS2 method accuracy at small time 
steps.  Because the NK2 method does not have these linearization and splitting errors, it 
maintains it second order accuracy and is the most efficacious method for small errors 
below 10. 
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Figure 20. Error versus Dynamical time scale for the 2-D Marshak DSI problem. 

 
Figure 21. Error versus CPU time for the 2-D Marshak DSI problem. 

Conclusions  
Considering this manuscript as a continuation of the work presented in (Mousseau and 
Knoll, 2005) and (Rauenzahn et al., 2005) there are some basic statements that can be 
made about second order in time split and linearized solution methods.  One can 
construct a variety of second order split methods that will work for different test 
problems.  If there are constraints on the simulation code that prevent the implementation 
of a nonlinear solution method that does not contain splitting and linearizations (such as 
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NK2) then these second order split and linearized methods (such as OS2) are clearly 
preferred over the split and linearized first order methods (such as OS1).  Caution needs 
to be used when using the second order in time split and linearized methods because 
some physical problem may exploit the truncation errors caused by the splittings and 
linearizations (such as occurred in Strang-Rosenbrock method for the dimensional Saha 
ionization problems). 
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