
Proceedings from the 5LC 2005

Load Balancing Of Parallel
Monte Carlo Transport Calculations

R.J. Procassini, M. J. O’Brien and J.M. Taylor
Lawrence Livermore National Laboratory, P. O. Box 808, Livermore, CA 94551

The performance of parallel Monte Carlo transport calculations which
use both spatial and particle parallelism is increased by dynamically
assigning processors to the most worked domains. Since the particle work
load varies over the course of the simulation, each cycle this algorithm
determines if dynamic load balancing would speed up the calculation. If
load balancing is required, a small number of particle communications
are initiated in order to achieve load balance. This method has decreased
the parallel run time by more than a factor of three for certain criticality
calculations

Introduction
Monte Carlo particle transport calculations can be very time consuming, especially for

problems which require large particle counts or problem geometries with many zones.
Calculations of this magnitude are normally run in parallel, since a single processor does
not have enough memory to store all of the particles and/or zones. Several parallel exe-
cution modes techniques are employed in the parallel code MERCURY (Procassini, et al.,
2003) (Procassini and Taylor, 2005). The first mode involves spatial decomposition of
the geometry into domains, and assignment of individual processors to work on specific
domains. This method, known as domain decomposition, is a form of spatial parallelism.
The second mode, which is the easiest way to parallelize a Monte Carlo transport code, is
to store the geometry information redundantly on each of the processors, and assign each
processor a different set of particles. This method is termed domain replication, which is
a form of particle parallelism. In many cases, problems are so large that domain decom-
position alone is not sufficient. For these problems, a combination of both spatial and
particle parallelism is employed to achieve a scalable parallel solution.

Since particles often migrate in space and time between different regions of a prob-
lem, it is a natural consequence of domain decomposition that not all spatial domains will
require the same amount of computational work. Hence, the calculation is load imbal-
anced. In many applications, one portion of the calculation (cycle, iteration, etc.) must be
completed by all processors before the next phase can commence. If one processor has
more work than any of the other processors, the less-loaded processors must wait for the
most-loaded processor to complete its work.

In an attempt to reduce this form of particle-induced load imbalance, a technique has
been developed which allows the number of processors assigned to a domain, known as
the domain's replication level, to vary in accordance with the amount of work on that do-

Procassini, R. J., et al.

Proceedings from the 5LC 2005

main. This technique requires the use of both spatial and particle parallelism. The parti-
cles that are located in a given spatial domain are divided evenly among the processors
assigned to work on that domain, known as the domain's work group.

This paper describes a dynamic load balancing algorithm which minimizes the com-
putational work of the most loaded processor by off loading part of the work to other pro-
cessors. The paper is organized as follows. The parallel architecture of the MERCURY
Monte Carlo particle transport code is described in the next section . This is followed by
a discussion of a problem that illustrates the need for some form of load balancing in spa-
tially-decomposed parallel calculations. A discussion of the optimal number of proces-
sors that should be assigned to the domains is then presented. The various algorithms
used to implement dynamic load balancing are then described. This is followed by results
from parallel calculations which illustrate the advantage of enabling the dynamic load
balancer. Finally, the conclusions of the current work are presented.

The Architecture Of The MERCURY Parallel Monte Carlo Code
The Monte Carlo transport code MERCURY (Procassini and Taylor, 2005) supports

two modes of parallelism: spatial parallelism via domain decomposition, and particle
parallelism via domain replication (Procassini, et al., 2003). These modes may be used
individually or in combination.

Spatial parallelism involves spatial decomposition of the problem geometry into do-
mains and the assignment of each processor to work on a different (set of) domain(s).
This method is shown schematically in Figure 1, which represents a 4-way spatial decom-
position of a 2-D block unstructured mesh. The red arrows indicate communication
events, which are required when particles track to a facet which lies on an interprocessor
boundary.

In particle parallelism, the problem geometry is replicated on each processor, and the
particles are divided among each of the processors. Figure 2 shows the same 2-D mesh
with 2-way domain replication. The blue, curved arrows represent the collective “sum-
ming” communication events that are required to obtain final results from the per-proces-
sor partial results.

These modes can also be used in combination, where the problem is spatially decom-
posed into domains, and then within a domain, the particle load is divided among multi-
ple processors. Each domain can be assigned a different number of processors (replica-
tion level), depending on the particle work load. In Figure 3, the central domain is as-
signed 3 processors, since it has the highest work load. The left and right domains each
have a replication level of 2, since they are the next highest loaded domains, while the top
domain is not replicated, since it has the lightest particle work load.

The Requirement for Dynamic Load Balancing
The requirement for some form of active management of the particle work load in a

spatially-decomposed parallel transport calculation is illustrated in Figure 4. Figure 4a
shows the geometry of the double-density Godiva supercritical system, a highly-enriched
uranium sphere of radius r = 8.7407 cm and density of = 37.48 g/cm3. Particles are
sourced at the origin and a settle calculation is performed to find eigenvalue of the

Procassini, R. J., et al.

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 1. Spatial parallelism in MERCURY is achieved via domain decomposi-
tion (spatial partitioning) of the problem geometry. Particles must be transferred
to adjacent domains when they reach a domain boundary. The communication of
particle buffers between adjacent spatial domains is indicated via the red arrows.

Figure 2. Particle parallelism in MERCURY is achieved via domain replication
(multiple copies) of the problem geometry. The particle workload is distributed
across the copies of the domain. The summing communication of partial results is
indicated by the blue, curved arrows.

Proceedings from the 5LC 2005

system. This calculation is run on a 2-D mesh with 4-way spatial parallelism: a 2 by 2
spatial decomposition, as indicated by the black domain boundary lines in Figure 4b and
4c.

Procassini, R. J., et al.

Figure 3. Diagram illustrating the combination of spatial parallelism (domain de-
composition) and particle parallelism (domain replication). The central domain
has 3 processors assigned to it since it has the largest computational work load.

 (a) (b) (c)

 Problem Geometry 60% efficient 91% efficient

Figure 4. The double-density Godiva criticality problem: (a) the problem geometry, (b)
a constant, uniform assignment of processors to domains with 4 processors assigned to
each domain has a parallel efficiency of only 60% efficient, (c) a dynamic, varying as-
signment of processors to domains based on the work per domain is 91% efficient. Fig-
ures 4b and 4c are pseudo color plots of particle number density, where redder areas rep-
resent more computational work.

U

Air

4 4

4 4 5 2

7 2

Proceedings from the 5LC 2005

Figures 4b and 4c compare two different ways of distributing 16 processors to 4 spa-
tial domains. The first approach (Figure 4b) is to uniformly assign 4 processors to each
domain. This configuration does not take into account the actual work load of the do-
main, so it is less efficient (60% parallel efficiency, for a single cycle) than an approach
that considers the domain work load when deciding how many processors should be as-
signed to each domain. The second configuration (Figure 4c) assigns processors to do-
mains based on the work load of the domain. As a result, the parallel efficiency of this
calculation is much higher (91%, for a single cycle).

As used here, the parallel efficiency is defined to be the average computational work
over all processors, divided by the maximum computational work on any processor:

 = W p
W p

=
 1

N p ∑p=1

N p [W p]

max p = 1
N p [W p]

 [1]

where is the parallel efficiency, W p is the computational work associated with pro-
cessor p , N p is the number of processors, W p is the computational work averaged
over all of the processors and W p is the computational work on the most loaded pro-
cessor.

Note that the parallel efficiency is inversely proportional to the maximum work load
of any processor, so having even a single processor that is over worked can dramatically
slow down the entire calculation. Since the calculation run time is inversely proportional
to the parallel efficiency, the goal of load balancing is to maximize the parallel efficiency
and minimize the run time to run the problem. The parallel efficiency of the calculation
changes as the problem evolves over time, or as the replication level of the domains
changes.

What is the reason for this large disparity in parallel efficiencies as one changes the
replication level of the domains? Figure 5 illustrates the dynamic nature of the particle
work load as the problem evolves over time. Time increases to the right, and then down,
in the figure. These are pseudo color plots of the particle number density per zone at 6
cycles during the calculation. Initially all of the work is on the lower-left domain (Do-
main 0), since the particles were sourced in at the origin. As time evolves, the particles
migrate to the other domains, first to the upper-left (Domain 2) and lower-right (Domain
1) domains, and then to the upper-right domain (Domain 3). This explains why the static
replication shown in Figure 4c (7, 2, 5, 2) out performs the processor assignment shown
in Figure 4b (4, 4, 4, 4).

The Optimal Number of Processors per Domain
The figures in the previous section clearly show that the computational work load in a

parallel Monte Carlo transport calculation changes over the course of the problem. This
implies a change in the work load of any given domain. As a result, the number of pro-
cessors assigned to work on a domain (replication level) should respond according to the
work load of that domain.

Procassini, R. J., et al.

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 6. Variation of the replication level (number of assigned processors) of each do-
main as a function of time.

Processors Per Spatial Domain

0

2
4

6
8

10
12

14

0 1 3 4 5 7 30

Cycle

Nu
m

be
r o

f P
ro

ce
ss

or
s

Domain 0
Domain 1
Domain 2
Domain 3

Figure 5. Pseudocolor plot of particle number density at several times during the simula-
tion. Redder areas indicate more computational work. Clearly, there is an uneven work-
load over time. The black lines indicate the domain boundaries.

Proceedings from the 5LC 2005

Figure 6 is a graph showing the dynamic nature of the work load from cycle to cycle
in the double-density Godiva problem. The calculation was run with 4 domains on 16
processors. The calculation begins with a uniform assignment of processors to domains:
each domain has 4 processors working on its particles. After the first cycle, the code re-
sponds to the large number of (sourced) particles in Domain 0 by assigning 13 processors
to it (3 processors are reassigned from each of Domains 1,2 and 3). As time evolves, the
work load per domain changes, leading the code to redistribute the number of processors
working on each domain. At the end of the simulation, there are 6 processors working on
Domains 0 and 2, while 2 processors are working on Domains 1 and 3.

The computational work performed by each processor W p is approximately equal
to the number of particle segments that occurred on each processor during the previous
cycle. A segment is defined to be one of the following particle events:

(1) Facet Crossing

(2) Collision

(3) Thermalization

(4) Census

(5) Energy-group Boundary Crossing

The computational work performed on each processor, represented by a single integer
per processor, is then globally communicated, such that each processor knows the work
load of all other processors. Since the domain that each processor is currently assigned to
is known, it is straightforward to determine the most worked domain. The code then pre-
dicts what the parallel efficiency would be if a redistribution of processors was to take
place at the current time. This prediction is used in to determine when to perform a dy-
namic load balance operation.

Description of the Load Balancing Algorithms

Determining When to Load Balance
The dynamic load balance algorithm is designed to be executed only if it will result in

a faster overall calculation. This criterion can be checked inexpensively each cycle. The
code calculates the current parallel efficiency C , as well as what the parallel efficiency
would be if the code was to redistribute processors right now LB . The ratio of these
two efficiencies defines the speedup factor S :

S =
C

LB
 [2]

Procassini, R. J., et al.

Proceedings from the 5LC 2005

The computer time required to execute the previous physics cycle Phys and the
time required to perform the load balance operation itself (the communication cost of dis-
tributing the particles to other processors, LB) define the predicted run time for the next
cycle ' :

' = Phys⋅S LB [3a]

 = Phys [3b]

A comparison of the predicted run time of the next cycle run with and without a load
balance operation is used to determine if a dynamic load balancing operation is worth-
while:

Determining The Optimal Domain Replication-Level
This section describes the algorithm used to determine the number of processors that

should be assigned to work on each domain, also known as the domain's replication level.
This algorithm uses (a) the number of processors N P , (b) the number of domains
N D and (c) the work load per domain W i , i = 1. .. N D in order to determine the op-
timal domain replication level P i , i = 1. .. N D that minimizes the particle work load on
the most worked processor. The result is a parallel calculation which is (reasonably) load
balanced.

This algorithm is similar to what a manger of a company might use when assigning
employees to different projects. In this scenario, N P is equivalent to the total number of
employees, N D is the number of projects, W i is the total work for project i, and P i is
the number of employees working on project i. To start, each project is assigned one em-
ployee. The process then continues in an iterative manner, by finding the project with the
most work per employee and assigning another employee to that project, until there are
no more employees available. A simple proof by mathematical deduction on N D shows
that this algorithm minimizes the particle work load on the most worked processor.

The Particle Communication Algorithm
Once the per-domain particle work load has been used to determine the optimal num-

ber of processors to assign to each domain, particles must be communicated between pro-
cessors in order to move from the current (load imbalanced) state, to the desired (load
balanced) state. This is accomplished by (a) finding the changes to the per processor par-
ticle count that need to be communicated (or transferred) to another processor, followed
by (b) sending that small set of particles to other processors in order to achieve load bal-
ance.

Procassini, R. J., et al.

if ' 0.9⋅
{

DynamicLoadBalance(); [4]
}

Proceedings from the 5LC 2005

The operation of this algorithm is illustrated in Figure 7. The following explains how
to balance the particles within a given domain d . This algorithm requires as input the
current state of (a) the number of processors assigned to work on the specified domain
Pd and (b) the number of particles on each processor C i , i = 1. .. N D . The algo-
rithm then communicates particles in order to achieve a load balanced state (see Figure 7,
Step 4).

An easy way to think about this algorithm is to imagine Pd stacks of quarters, where
each stack of quarters can be a different height. Say the i-th stack of quarters has C i

quarters in it. The goal of the algorithm is find a small set of transfers of quarters from
one stack to another such that, in the end, each stack of quarters is about the same height.
The general idea is to move quarters from the tallest stack to the shortest stack, such that
after the move, one of the stacks will have the average number of quarters C in it.
Once a stack of quarters has the average number of quarters in it, it no longer participates
in the transfers, since it already has the target number of quarters. The procedure repeats
until all of the stacks consist of the average number of quarters.

In the case of the MERCURY load balance algorithm, the number of stacks of quar-
ters corresponds to the number of processors, while the height of each stack of quarters
corresponds the number of particles on that processor. Particles must be communicated
between processors such that each processor ends up with about the same number of par-
ticles on it after the load balancing operation completes. Once the communication graph
has been executed, the number of particles per processor is the same for all processors
assigned to work on that domain, modulo a few particles if there is a remainder from the

division: C = 1
M d ∑i=1

M d

C i .

This is a very natural load balancing algorithm. The number of particles on every
processor C i is either over the average C , or under the average C . If a processor's par-
ticle count C i already equals C , then it does not need to participate in load balancing,
since it already has the desired number of particles. If C i is over the average, then the
processor sends particles to other processors, and its particle count is reduced to C . In
contrast, if C i is under the average, then the particle receives particles from other pro-
cessors, increased its particle count to C . As a result, a processor is either sending or re-
ceiving particles, but not both in the same cycle.

The goal is that all processors will end up with the average number of particles per
processor. At each iteration, the particles are sent from the processor with the most parti-
cles to the processor with the least particles, and one of those processors will end up with
C particles. Each iteration results in one processor having C particles, such that the al-

gorithm can be iterated at most Pd times. The result is a very sparse communication
graph that is used to achieve load balance, which is important since communication can
be expensive on modern, parallel computing platforms.

Procassini, R. J., et al.

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 7. A graphical representation of the dynamic load balancing algorithm: (a) the
legend that describes the various steps of the algorithm, (b) the first and second steps of
the algorithm.

This is the legend for the diagrams in this figure. The length of the particle
bar indicates the number of particles on each processor. Particles within a
domain must remain within that domain after load balancing.

Domain 0 Domain 1

Domain 2 Domain 3

Processor

Domain 0 Particles

Domain 1 Particles

Domain 2 Particles
Domain 3 Particles

Step 1. The initial particle distribu-
tion over processors at the start of a
cycle.

Step 2. Domain 2 loses one proces-
sor that is reassigned to Domain 0.
The particles on that processor must
be communicated to the other pro-
cessors that remain assigned to Do-
main 2.

Domain 0 Domain 1

Domain 3Domain 2

Domain 0 Domain 1

Domain 3Domain 2

a

b

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 7 (continued). A graphical representation of the dynamic load balancing algo-
rithm: (c) the third and fourth steps of the algorithm, (b) the fifth step of the algorithm.

Step 3. After determining which
processors are assigned to each do-
main, each domain can independent-
ly balance its particle load.

Step 4. This communication is nec-
essary to achieve load balance with-
in each domain.

Domain 0 Domain 1

Domain 2 Domain 3

Domain 0 Domain 1

Domain 2 Domain 3

Step 5. The end result of load bal-
ancing: the number of processors
per domain has been changed so that
the maximum number of particles
per processor in minimized.

Domain 0 Domain 1

Domain 2 Domain 3

c

d

Proceedings from the 5LC 2005

Results
The efficacy of dynamic load balancing in the context of parallel Monte Carlo particle

transport calculations is tested by running one criticality problem and one sourced prob-
lem. These problems are chosen because they exhibit substantial particle-induced dynam-
ic load imbalance during the course of the calculation. Each of these problems is time de-
pendent, and the particle distributions also evolve in space, energy and direction over
many cycles. Two calculations were made for each of these problems, with the dynamic
load balancing feature either disabled or enabled.

Criticality Test Problem
The criticality problem chosen for this test is one of the benchmark critical assemblies

compiled in the International Handbook of Evaluated Criticality Safety Benchmark
Experiments (ICSBEP, 2004). This particular critical assembly is a known as HEU-MET-
FAST-017: a right-circular cylindrical system comprised of alternating layers of highly-
enriched uranium and beryllium, with beryllium end reflectors. The assembly is
L = 35.31 cm in length and has a radius of r = 9.995 cm, as shown in Figure 8. The

central cavity contains a neutron source, and the two halves of the assembly are separated
by a = 1.52 cm air gap.

This problem was run on a 2-D r − z mesh that was spatially decomposed into 14
domains, axially along the axis of rotation. Parallel calculations were run on 28 proces-
sors of the MCR machine (a Linux-cluster parallel computer with 2-way symmetric

Procassini, R. J., et al.

Figure 8. Geometry of the critical assembly test problem HEU-MET-FAST-017. The
green regions are highly enriched uranium, while the red and maroon regions are two dif-
ferent forms beryllium.

Proceedings from the 5LC 2005

multiprocessor nodes) at the Lawrence Livermore National Laboratory (LLNL). These
calculations were run with N p = 2×106 particles, using a “pseudo-dynamic” algorithm
that iterates in time to calculate both the k eff and eigenvalues of the system.

The nature of particle induced load imbalance in this calculation is clearly seen in
Figure 9. Pseudocolor plots of the particle number density are shown at six cycles during
the evolution of the time iteration algorithm. Redder areas indicate a greater particle den-
sity, and hence a larger work load, than do blue areas. The domain boundaries are indi-
cated by the black lines in Figure 9. The particles are initially sourced into the problem at
the center of the source cavity, as shown in the Cycle 1 plot. As the cycles progress, the
particles transport through all of the domains, but it is clear the the heterogeneous nature
of this assembly results in uneven particle densities at all cycles.

The run in which the dynamic load balancing feature was disabled had a uniform,
static replication level (work group) of two processors assigned to each domain. When
this feature is enabled, the size of the work group assigned to each domain varies in ac-
cordance with the work load per domain, as shown in Figure 10. The initial load imbal-
ance (see the Cycle 1 plot in Figure 9) results in 12 processors being assigned to work on
the domain containing the source cavity (Domain 5) during cycle 1: a 12-to-2 (6-to-1)
max-to-mean domain processor count. As the work load evens out over time, the replica-
tion level becomes less peaked at the center of the system, such that by cycle 15, some

Procassini, R. J., et al.

Figure 9. Pseudocolor plots of the particle number density for six cycles during the evo-
lution in the critical assembly test problem. The particle density increases as the color
changes from blue to red. The domain boundaries are indicated by the black lines.

Cycle 3

Cycle 1

Cycle 4

Cycle 8 Cycle 15

Proceedings from the 5LC 2005

central domains are assigned 3 processors, while the peripheral domains are assigned 1
processor, with the remaining domains being assigned 2 processors: a 1.5-to-1 max-to-
mean ratio.

The non-load-balanced and load balanced per-cycle run times and the parallel effi-
ciencies are presented as a function of the cycle count in Figure 11. These figures show
only the first 14 iterative cycles. When the load balancing feature is enabled, the per-cy-
cle run times are reduced by more than a factor of 2 for Cycle 2, and the reduction in run
time is a factor of 1.3 at Cycle 14. Similarly, the parallel efficiency is increased by a fac-
tor of 2.4 at Cycle 2, and then falls off to a factor of 1.2 at Cycle 14. The cumulative run
time is reduced by 39% when the load balancer is enabled, as shown in Table 1.

Procassini, R. J., et al.

Figure 10. Evolution of the number of processors assigned to each domain (replication
level) at six cycles during the iterative calculation. The initial load imbalance results in 6
processors being assigned to work on the domain containing the source cavity during cy-
cle 1. Later, as the work load evens out, the replication level becomes less peaked at the
center of the system.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Number of Processors Per Domain

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Domain Number

N
um

be
r o

f P
ro

ce
ss

or
s

Cycle 0
Cycle 1
Cycle 2
Cycle 3
Cycle 4
Cycle 5
Cycle 7
Cycle 10
Cycle 15

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 11. Per-cycle run time and parallel efficiency as a function of cycle from the cal-
culations of the critical assembly test problem. The non-load-balanced results are shown
in pink, while the load balanced results are shown in blue.

Cycle Run Time vs. Cycle

0

5

10

15

20

25

30

35

40

45

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycle

R
un

 T
im

e
P

er
 C

yc
le

 (s
ec

on
ds

)

Load Balanced
Not Load Balanced

Parallel Efficiency vs. Cycle

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cycle

P
ar

al
le

l E
ffi

ci
en

cy

Load Balanced
Not Load Balanced

Proceedings from the 5LC 2005

Sourced Test Problem
The time-dependent sourced problem chosen for this test is a spherized version of a

shielding configuration that has been considered as a candidate for the neutron shield sur-
rounding a fusion reactor. The shield consists of alternating layers of stainless steel and
borated polyethylene, as shown in Figure 12. The radius of the inner steel sphere is
r = 35.56 cm, and the thickness of each of the the other shells is = 5.08 cm. Mo-

noenergetic E = 14.1 MeV particles are sourced into the center of the system from an
isotropic point source. During each of the the first 200 cycles, N p

' = 1×105 particles are
injected into the system. The source is then shut off, and the particles continue to flow
through the shield for the next 800 cycles. The size of the time step is t = 1×10−8

sec.

This problem was also run on a 2-D r − z mesh that was spatially decomposed in 4
domains, 2 domains along each of the axes. Parallel calculations were made using 16
processors of the MCR machine. The main tally for these calculations is the time history
of the particles leaking across the outer steel layer into the air.

The evolution of the particle positions is shown for six cycles in the scatter plots of
Figure 13. The particles are color coded according to their kinetic energy: red is 14.1
MeV, green is 1×10−5 MeV and cyan is 1×10−8 Mev. The interior (exterior) shell
boundaries are shown in blue (red), while the domain boundaries are shown in black. It is
clear from these figures that the majority of the particle work load “flows” from the bot-
tom-left domain (Domain 0) early in time (Cycle 2), to the domains on the periphery (Do-
mains 1 and 2) later in time (Cycles 301 through 1001).

The run in which the dynamic load balancing feature was disabled had a uniform,
static work group of four processors for each domain. Enabling the load balancer gave
work groups whose sized varied with the work load per domain, as shown in Figure 14.
The initial load imbalance (see the Cycle 2 plot in Figure 13) results in 13 processors be-
ing assigned to work on the domain containing the source location (Domain 0) during cy-
cle 1: a 13-to-4 (3.25-to-1) max-to-mean domain processor count. As the work load
evens out over time, especially once the source is turned off, the replication level be-
comes less peaked at the center of the system. By cycle 300, the near-peripheral Domains
1 and 2 are assigned 4 and 5 processors, while the center Domains 0 is assigned 6 proces-
sors, with the far-peripheral Domain 3 being assigned 1 processor: a 6-to-4 (1.5-to-1)
max-to-mean ratio.

Procassini, R. J., et al.

Table 1. Critical Assembly Test Problem Cumulative Run Times

Problem Run Time (sec)
Cycle Range Not Load Balanced Load Balanced Speedup

 1 to 4 102.2 65.0 1.57
1 to 14 397.1 286.4 1.39

Proceedings from the 5LC 2005

The per-cycle run time and the parallel efficiency of the non-load-balanced and load
balanced calculations are shown as a function of the cycle count in Figure 15. During the
first 200 cycles, while the source is turned on, the figures indicates that the run time is
high and the efficiency is low for the non-load-balanced calculation. By enabling the load
balancing feature, these per-cycle run times are reduced by more than a factor of 2, and
the efficiency is increased by more than a factor of 2.5. Once the source is turned off, the
benefit of load balancing is not as substantial, however, the efficiency of the load-bal-
anced calculation still exceeds that of the non-load-balanced calculation by a factor of 1.3
to 1.8. This trend is also seen in the data presented in Table 2.

Procassini, R. J., et al.

Figure 12. Geometry of the spherical-shield sourced test problem. The green areas are
stainless steel and the blue areas are borated polyethylene. The dots on the right-hand im-
age represent particles which are color coded by kinetic energy (blue is low, red is high).

Air

SS
SS

SS

BP

BP

Table 2. Spherical Shield Test Problem Cumulative Run Times

Problem Run Time (sec)
Cycle Range Not Load Balanced Load Balanced Speedup

 1 to 201 1355 615 2.20
1 to 1001 2221 1404 1.58

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 13. Scatter plots of the particle positions for six cycles during the evolution of the
spherical shield test problem. The boundaries of the spherical shells are shown in blue or
red, while the domain boundaries are indicated by the black lines.

Cycle 2 Cycle 101

Cycle 201 Cycle 301

Cycle 701 Cycle 1001

Proceedings from the 5LC 2005

Conclusion
The particle work load in a spatially-decomposed, parallel Monte Carlo transport cal-

culation has been shown to be dynamic and non-uniform across domains. This particle-
induced load imbalance results in a reduction of the computational efficiency of such cal-
culations. In an effort to overcome this shortcoming, the MERCURY Monte Carlo code
has been extended to include a dynamic particle load balancing algorithm. The method
uses a variable number of processors that are assigned to each domain (replication level)
in an attempt to balance the number of particles per processor. The algorithm includes
logic that determines the optimal number of processors per domain, when to perform a
dynamic redistribution of processors to domains, as well as how to perform the load bal-
ancing particle communications between processors. This method has been applied to the
parallel calculation of one criticality and one sourced problem, where it has yielded more
than a two-fold increase in the parallel efficiency.

Acknowledgments
This work was performed under the auspices of the U.S. Department of Energy at the

Lawrence Livermore National Laboratory under Contract Number W-7405-Eng-48.

Procassini, R. J., et al.

Figure 14. Evolution of the number of processors assigned to each domain (replication
level) during the time dependent calculation. The initial load imbalance results in 13 pro-
cessors being assigned to work on the center domain during cycle 1. Later, as the work
load evens out, the replication level becomes less peaked at the center of the system.
Note that Domains 1 and 2 are not symmetric: since this is a cylindrically symmetric sys-
tem, the volume of Domain 2 is greater than the volume of Domain 1, and hence the
number of particles in Domain 2 is greater than that in Domain 1.

Domain 3

Domain 1Domain 0

Domain 2

Number Of Processors Per Domain

0

2

4

6

8

10

12

14

0 200 400 600 800 1000

Cycle

N
um

be
r O

f P
ro

ce
ss

or
s

Domain 0
Domain 1
Domain 2
Domain 3

Proceedings from the 5LC 2005

Procassini, R. J., et al.

Figure 15. Per-cycle run time and parallel efficiency as a function of cycle from the cal-
culations of the spherical shield test problem. The non-load-balanced results are shown
in pink, while the load balanced results are shown in blue.

Cycle Run Time vs. Cycle

0

1

2

3

4

5

6

7

8

1 101 201 301 401 501 601 701 801 901

Cycle

Cy
cl

e
Ru

n
Ti

m
e

(s
ec

on
ds

)

Load
Balanced

Not Load
Balanced

Parallel Efficiency vs. Cycle

0

10

20

30

40

50

60

70

80

90

100

1 101 201 301 401 501 601 701 801 901

Cycle

Pa
ra

lle
l E

ffi
ci

en
cy

Load
Balanced

Not Load
Balanced

Proceedings from the 5LC 2005

References
Procassini, R. J., Taylor, J. M., Corey, I. R. and Rogers, J. D., "Design, Implementation

and Testing of MERCURY: A Parallel Monte Carlo Transport Code", 2003 Topical
Meeting in Mathematics and Computations, Gatlinburg, TN, American Nuclear
Society (2003).

Procassini, R. J. and Taylor, J. M., Mercury User Guide (Version b.8), Lawrence Liver-
more National Laboratory, Report UCRL-TM-204296 (2005).

The International Critical Safety Benchmark Evaluation Program, International Hand-
book of Evaluated Criticality Safety Benchmark Experiments, NEA Nuclear Science
Committee, Nuclear Energy Agency, Report NEA/NSC/DOC(95)03 (2004).

Procassini, R. J., et al.

