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A completely conservative Lagrangian difference scheme has been 
constructed for planar problems of gas dynamics. Difference operators 
GRAD and DIV  have a simple and convenient form. Artificial 
viscosity is introduced along two directions of the scheme, therefore, 
even if strongly elongated cells are used a shock wave is “smeared” 
over the same number of cells regardless of the shock direction. From 
monotonicity of  solution in 1D case, viscosity is derived as some non-
linear combination of linear and quadratic viscosity. Results of 
numerical simulations are presented. For all 2D problems related to 
gas expansion in vacuum the simulation results obtained with the 
completely conservative scheme are more accurate than those obtained 
with the divergent and non-divergent schemes. 

Introduction 
Code MAX [1] implements both divergent and non-divergent schemes with 

respect to total energy, which are used during the Lagrangian step. 
In a planar case the conservative Lagrangian scheme in the MAX code is the same as 
that proposed by C.Hirt and A.Amsden in Ref.[2] except for artificial viscosity. If 
kinetic energy is much higher than the internal one, even a minor relative error in 
calculated velocity might lead to significant errors in determined internal energy, 
which would show up through non-monotonicity of the numerical solution and 
negative internal energy in some cells. The non-divergent scheme, if applied in such 
cases, gives better results, but leads to imbalance of total energy.  It is possible to try 
to eliminate the drawbacks of these two schemes by using a completely conservative 
difference scheme. Here “completely conservative” means that to construct the 
scheme, difference analogues of the basic laws of conservation (mass, momentum and 
total energy) are implemented in the same way as for the conservative scheme, and a 
difference analogue of the energy equation is written in the non-divergent form. The 
paper presents such a scheme. It approximates differential equation of internal energy 
and includes difference analogues of operators div  and grad  based on the law of 
conservation of total energy.  
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 2D completely conservative Lagrangian difference scheme for gas 
dynamics 
 Integral laws of conservation for some volume ω  moving with the material 
particles can be written as: 

( )

0,
t

d
d

dt ω
ρ ω=∫∫  (1) 

( ) ( )

,
t t

d
Wd pnd

dt ω γ

ρ ω γ=−∫∫ ∫  (2) 

( )2

( ) ( )

1 , ,
2t t

d
W d p nW d

dt ω γ

ρ ε ω γ⎛ ⎞+ =−⎜ ⎟
⎝ ⎠∫∫ ∫  (3) 

where ρ  is density, W  is a velocity vector, p  is pressure, ε  is specific internal 
energy. It is necessary to derive solution to the system of equations (1)-(3) in some 
domain Ω  at specified initial and boundary conditions. In the planar case, let ( )tω  be 
treated as area and ( )tγ  as a contour limiting ( )tω . 
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Fig. 1 Fragment of a difference mesh. 
Domain  Ω  is covered with a quadrilateral mesh that can be mapped into a 

rectangular mesh in a square with some non-degenerate transformation. The 
quadrilaterals are called cells and their vertices are called nodes. Consider four 
adjacent cells. The nodes are labeled with digits as shown in Fig. 1 and cells are 
marked with letters A, B, C, and D. 
The cell area is calculated with the following formula 

[ ]1 3 2 4 1 3 4 2
1 ( )( ) ( )( )
2AS x x y y y y x x= − − + − −  , (4) 

where ( , )x yα α  are Cartesian coordinates of node α ( 1,2,3,4)α= . 
Densityρ , energy ε , and pressure p  are referred to the cells and velocity [ ],W u v=  
is referred to the nodes.  
Define the cell mass as 

A A AM Sρ=  . 
Then the node mass is  

4
1( )
4 A B C DM M M M M= + + + .    

Equation (1) means that cell masses are constant in time.  The numerical method 
implemented in MAX complex [1] approximates equation (2) in the following way: 

1
( )4 4

4 0
n nW W

GRAD p σ

τ

+ −
+ =  (5) 
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( )
4

3 1 6 3 8 6 1 8( ) ( ) ( ) ( )
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1
2 A B C D

GRAD p

y y y y y y y y
p p p p

x x x x x x x xM

σ

σ σ σ σ

=

− − − −⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎝ ⎠

 (6) 

( ) 1 (1 )n n
A A Ap p pσ σ σ+= + −   (in MAX scheme 1σ = ). 

 Difference operator GRAD  (6) is used in numerical methods to approximate 
equation of motion pretty often, for example, in scheme D [3], in Wilkins method [4], 
etc. 
 Consider an equation of energy in the non-divergent form: 

0d
p divW

dt
ερ + ⋅ = . 

Approximate it: 
1

( ) (0.5) 0
n n
A A

A Ap DIV Wσε ε
τ

+ −
+ = , (7) 

where 
1

(0.5)

2

n nW W
W

+ +
= . 

Derive (0.5)
ADIV W  for the law of conservation of total energy for the whole domain 

Ω  (difference analogue of integral equation (3)). 
Assume that KΩ  is a set of the mesh nodes, NΩ  is a set of cells, and LΓ  is a set of 
boundary sections of the mesh. 
 Calculate a scalar product of equation (5) by vector (0.5)

4 4W M , sum over all 
mesh nodes and add the result to equation (7) multiplied by the cell mass and summed 
over all cells and obtain  

2 21
1

(0.5) ( ) ( ) (0.5)

2 2

( ( , ) ).

n n
n n

A A A A
K A N K A N

A A A
K A N

W W
M M M M

M W GRAD p M p DIV W

α α
α α

α α

σ σ
α α α

α

ε ε

τ
Ω Ω Ω Ω

Ω Ω

+
+

∈ ∈ ∈ ∈

∈ ∈

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ − +
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦=

− +

∑ ∑ ∑ ∑

∑ ∑

  

To meet difference analogue (3), write down the condition: 
(0.5) ( ) ( ) (0.5)

(0.5)

( , )

( , ) ,

A A A
K A N

L

M W GRAD p M p DIV W

p nW l

σ σ
α α α

α

β β β
β

Ω Ω

Γ

∈ ∈

∈

+ =

∆

∑ ∑

∑
 (8) 

here lβ∆  is a length of boundary section β . 
OperatorsGRAD  and DIV  meeting condition (8) are called consistent [5]. 
Condition (8) allows unique determination of the velocity divergence: 

A
A

A

DUV
DIV W

M
= ,  

где A A A A ADUV DH DF DR DL= − + − , (9) 

[ ]2 3 3 2 2 3 2 3
1 ( )( ) ( )( ) ,
2АDH u u y y v v x x= + − + + −  (10) 

[ ]1 2 2 1 1 2 1 2
1 ( )( ) ( )( ) ,
2ADR u u y y v v x x= + − + + −  (11) 

[ ]1 4 4 1 1 4 1 4
1 ( )( ) ( )( ) ,
2ADF u u y y v v x x= + − + + −  (12) 
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[ ]3 4 3 4 3 4 4 3
1 ( )( ) ( )( ) .
2ADL u u y y v v x x= + − + + −  (13) 

 So, the system of equations (6) and (7) is completely determined.  
Expression for ADIV W (10)-(13) is a natural and widely used approximation of the 
velocity vector flow through the boundary of cell A . The obtained difference scheme 
coincides with one of the versions of scheme proposed in Ref. [6], and it is an 
approximation of the second order with respect to spatial variables on the uniform 
mesh and of the first order with respect to time, though at σ=0.5 energy and motion 
equations are approximated to the second-order with respect to time. 
 To calculate flows with shock waves, it is necessary to introduce artificial 
viscosity in the difference scheme. In 1D case, this is done by introducing some 
addition to pressure. In 2D case two viscosities are introduced in [1]: viscosity in 
direction j  denoted asQJ , and one in direction i  - QI (see Fig. 1). Formulas below 
are associated with viscosity in the j -direction, they are similar for the other 
direction. To include artificial viscosity in the equation of motion in [1], it is 
necessary to define: 

4

12 34 34 56 67 48 48 19

34 12 56 34 48 67 19 484

( ) ( ) ( ) ( )1 ,
( ) ( ) ( ) ( )2
A B C D

A B C D

GRADJ QJ

QJ y y QJ y y QJ y y QJ y y

QJ x x QJ x x QJ x x QJ x xM

=

− + − + − + −⎛ ⎞
− ⎜ ⎟− + − + − + −⎝ ⎠

  

here the following notations are used 

2
x x

x α β
αβ

+
= ,    

2
y y

y α β
αβ

+
= . 

Then rewrite the equation of motion in the following form: 
1

( )4 4
4 4 4 0

n nW W
GRAD p GRADJ QJ GRADI QIσ

τ

+ −
+ + + = . (14) 

The equation of energy is: 
1

( ) (0.5) (0.5) (0.5) 0
n n
A A

A A Ap DIV W QJ DIVJ W QI DIVI Wσε ε
τ

+ −
+ + ⋅ + ⋅ = , 

where 

 
( )( )(

( )( ))

(0.5) (0.5) (0.5) (0.5) (0.5)
12 34 4 1 2 3

(0.5) (0.5) (0.5) (0.5)
34 12 4 1 2 3

1
2

,

A
A

DIVJ W y y u u u u
M

x x v v v v

= − + − − +

+ − + − −
 

Coordinates of the mesh nodes in all constructed difference operators are from the n-
th time layer. 
The latest operator was obtained from condition: 

(0.5) (0.5)
A A A

A

M W GRADJ QJ M QJ DIVJ Wα α α
α

=−∑ ∑ , 

which results for the law of conservation of total energy and is obtained similarly to 
(8). 
 What still remains to be done is way of determining QJ and QI . Below we 
determine the form and viscosity coefficient for the 1D case and generalize them for 
the 2D case. 

 Artificial viscosity 
 Write down a difference scheme approximating gas dynamic equations in 1D 
planar case including artificial viscosity.  For short, use notations of Samarsky A.A: 
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1 1
1 1 1

2 2 2
, , , ,n n n n

i i i i i
u u u u p p p p q q

∧ ∧
+ +

+ + +
= = = = = , 

( ) ( )
1 1( ) ( )i iu u p p q q

m m
σ στ τ∧

− −= + − + − , (15) 

1 1

1

( ), 0

0, 0

i i

i

u u еслиu u
q m

еслиu u

λ
+ +

+

⎧ − − >⎪=⎨
⎪ − ≤⎩

 (16) 

m

V
ρ
∧

∧= , (17) 

1( )iV V u uτ
∧ ∧ ∧

+= + − ,      1 ,iV x x+= −  (18) 

( )
( )

(0.5) (0.5)
1i

p q
u u

m

σ

ε ε τ
∧

+

+
= + − . (19) 

The reasoning below is done for a specific case for consistent two-term equation of 
state 

2
0 0( 1) ( )p cγ ερ ρ ρ= − + − , (20) 

2
2 0 0p c
c

γ ρ
ρ ρ

= + ,  

с is adiabatic speed of sound. 
Mass step is assumed constant. As in Ref. [1], derive λ  from the monotonicity of the 
difference solution for stationary shock wave. 
Instead of scheme (15)-(19), consider scheme differing by 2( )O τ  

( ) ( )
1 1 1 12 2( ) ( ) ( ),i i i iu u p p u u u u

m m m
σ στ τ τλ λ

∧

− − − += + − + − − −  (21) 

2 2 2 2 2
1 1

2 3 2
2 2

1 12 2

( )( ) ( )( )
2

(1 ( 1)) ( ) ( 1) ( ) .

i i

i i

p p c a u u c a u u
m

c
u u u u

m m

τ ρ

τ ρ τσ γ γ ρλ

∧ ∧ ∧

+ +

+ +

⎡ ⎤= + + − + − − +⎢ ⎥⎣ ⎦

+ − − + − −

 (22) 

Substituting (22) in (21), obtain a three-point equation of u
∧

, from which λ  can be 
derived. 
Assume that at time nt t= a stationary shock wave is set. 

0 0 0 0
1 1 1 1, , ,c u pρ  and 0 0 0 0

2 2 2 2, , ,c u pρ  are values behind and in front of the front, respectively. 
Gas dynamic values at the discontinuity meet the Hugoniot conditions. 
Using an expression following from the Hugoniot relations in a specific case of EOS 
(20) 

2
0 0 0 0 0 2 0 0 2 0 0
1 2 2 1 2 2 1 2 1 2

1 1( ) ( ) ( )
4 4

p p u u c u u u u
γ γρ

⎛ ⎞+ +⎛ ⎞⎜ ⎟− = − + − + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
,  

and keeping monotonicity of the numerical profile of the velocity, obtain the 
following form of viscosity in 1D case 

2 2
2 2 4 1 1 21 1 , 0

4 4 2

0, 0,

u c u u если u
q

если u

χ χγ γρ
⎧ ⎛ ⎞ + + −+ +⎛ ⎞⎪ ⎜ ⎟∆ + ∆ + ∆ ∆ >⎪ ⎜ ⎟= ⎜ ⎟⎝ ⎠⎨ ⎝ ⎠⎪

∆ ≤⎪⎩

 (23) 
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where 
2

2 .c
m
τχ σ ρ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 

 To simulate shock waves, difference methods employ mostly linear or 
quadratic viscosity or a combination of these two. The viscosity derived also has a 
form of some non-linear combination of those two viscosities: linear and quadratic. 
This viscosity differs by a factor from that proposed by V.F.Kuropatenko [7]. At 1σ =  
viscosity (23) absolutely coincides with the viscosity used in divergent and non-
divergent MAX schemes. 
Monotonicity of the difference solution to velocity puts a restraint on the time step 

2 2
0 2 2

2 2

2 2
( 1)

h c

u a c
τ

γ σ
≤

+ ∆ +
, 

and monotonicity of density requires:  
2

2 2 2
2 0 0 2 2
2

,
1 12

4 4 2

h

c a
c u u

τ
γ γ σ

≤
⎛ ⎞+ + +⎛ ⎞⎜ ⎟+ ∆ + ∆ −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  

2
2 2
2 2

2h
a c

τ
σ

≤
+

.  

 In many 2D techniques artificial viscosity is introduces as an addition to 
pressure. It is defined similarly to 1D case, but in 2D case the role of u∆  is played by 
h divW− ⋅ , where h  is a typical cell size. When strongly elongated mesh cells are 

used in order to “smear” a shock wave over the same number of cells regardless of the 
shock motion direction, parameter h  has to be define as a cell size in direction of 
maximum compression and for this purpose difference tensor of strain rate is used. 
The MAX technique [1] solves this problem in another way. Direction-dependent 
viscosities are introduced in a cell, each counteracting the cell compression along the 
specific direction. From (23) viscosities QI  and QJ  are defined in the following 
way. 
 Denote 

2 2( ) ( )A R L R LHI x x y y= − + − , 2 2( ) ( )A H F H FHJ x x y y= − + − ,  

max max( , )
A A AH HI HJ= , max

A A
A

H
c

S
χ τ σ⎛ ⎞=⎜ ⎟

⎝ ⎠
,   

21 4 1 2
2
A A

AK
χ χ+ + −

= , 

{ }max ( ),A A A ADJ DH DF DUV= − , 
DUV  , DH  , DF  , DR  , DL  are determined from formulas (9)-(13). 

/ , 0,
0, 0,

A A A
A

A

DJ HI еслиDJ
uJ

еслиDJ

− <⎧
∆ =⎨ ≥⎩

     

2
2 21 1

4 4A A A A A AQJ uJ uJ uJ c K
γ γρ
⎛ ⎞+ +⎛ ⎞⎜ ⎟=∆ ∆ + ∆ +⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

, 
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 Implementation of implicit difference scheme 
 At the next time step, gas dynamic values are calculated in two steps: explicit 
and iteration [1]. At the explicit step we determine preliminary velocity values for all 
mesh nodes by using formula (14) at 0σ = : 

( )nW W GRAD p GRADJ QJ GRADI QIα α α α ατ= − + +   
As the zeroth approximation for the iteration process, select  

0 0, .nW W p p= =  
Assume ,W pν ν  are known, calculation of the values at the nest iteration cycle 1ν +  is 
done according to the following procedure:  
1. nr r Wν ν

α α ατ= + ; 
2. determine AS

ν  (4) from the obtained rνα ; 

3. A
A

A

M
S

ν
νρ = ; 

4. ( ) (0.5) (0.5) (0.5)( )n
A A A A A Ap DIV W QJ DIVJ W QI DIVI Wν σε ε τ= − + ⋅ + ⋅ , 

    where ( ) (1 )v n
A A Ap p pσ σ σ= + − , (0.5)

2

v nW W
W

+
= ; 

5. 1
2

( , )
1 2( )
A A A

A
A

f p
p

ν ν ν
ν

ν

ρ εδ
κ

+ −
=

+
,   maxAA

A
A

c H

S

ν
ν τ

κ σ= , 

   ( , )p f ρ ε= is equation of state, с is adiabatic speed of sound; 
6. 1 1

A A Ap p pν ν νδ+ += + ; 
7. 1 1W W GRAD pν ν ν

α α ατ σ δ+ += − ⋅ ⋅ , 
α− runs through all mesh nodes, A  covers all mesh cells. 
The iteration process stops when at some kν ν=   the following is valid  

1

0
max

kp

p

νδ
ε

+

< , 

where maxp  is maximum pressure at the n-th step. 
Final values at the n+1-th step are determined by the formulas:  

1 11 1,k kn n
A Ap p W Wν ν

α α
+ ++ += = , 1 1,n n nr r Wα α ατ+ += +  

1n
AS
+  is calculated from 1,nrα

+  1
1 ,n A

A n
A

M
S

ρ +
+=  

1 ( ) (0.5) (0.5) (0.5)( ).n n
A A A A A Ap DIV W QJ DIVJ W QI DIVI Wσε ε τ+ = − + ⋅ + ⋅  

 Below is one of simulations of the model problem on expansion of a triangular 
cylinder. The results obtained with the MAX code are compared to the analytical 
solutions. 

Expansion of a triangular cylinder 
 Based on paper by Suchkov V.A. [8], it is possible to construct an exact 
solution to the problem on a planar 2D expansion of a cylinder filled with ideal gas 
with 2γ = , 1ρ= , and 0.5ε = . Cylinder cross-section with the oxy  plane orthogonal to 
the cylinder axis is a regular triangle with the side 1b= . This solution is valid till 
rarefaction waves of all three planes converge at the cylinder center. At this moment 
gas boundary in the oxy  plane is a regular hexagon. 
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Fig. 2 shows density fields obtained in calculations using non-divergent, 
divergent schemes of MAX technique and completely conservative scheme in 
comparison with the exact solution at time 0.289t= .  All solutions almost coincide at 
that time moment. 

Calculations are continued till 1t= . To compare the results obtained with 
different schemes, an approximate solution obtained in the following way is taken as a 
reference.  At the latest time 0.289t=  when the analytical solution still exists, its 
precise geometry is specified and covered with a fine uniform mesh and projection of 
the exact solution on this mesh is treated as initial distribution. Then calculation is 
done till 1t= . 
 Fig. 3 compares the results calculated with the non-divergent, divergent MAX 
schemes and the completely conservative scheme to the approximate solution. 
Calculation done with the completely conservative scheme is close to that obtained 
with the non-divergent scheme. This is explained by the fact that mesh in the center is 
very fine and time step in the calculations is very small. Solution obtained with the 
divergent scheme is non-monotonous. Numerical solution obtained with the 
completely conservative scheme appears to be the closest to the exact and 
approximate solutions. 



Proceedings of 5LC 2005 
 

Es'kov N.S. and Pronin J.V. 

9

 
 
 

 

 
 

0.00002 0.990020.495020.24752 0.74252  
Fig. 2 Density field at time 0.289t= , 

a) – exact solution, 
b) – non-divergent MAX scheme, 
c) – completely conservative scheme, 
d) – divergent MAX scheme. 

a) b) 

c) d) 
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Fig. 3 Density field at time 1t= , 
a) – approximate solution, 
b) – non-divergent MAX scheme, 
c) – completely conservative scheme, 
d) – divergent MAX scheme. 

a) b) 

c) d) 
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Conclusion 
 The paper describes the constructed 2D completely conservative difference 
scheme for solving gas dynamic equations in Lagrangian variables for the planar case 
and artificial viscosity derived for this scheme. Based on the analysis of the results of 
numerical calculations obtained with the divergent and non-divergent MAX scheme 
and completely conservative scheme for a number of test problems having the exact 
solution, the following conclusions can be drawn: 

• artificial viscosity similar to that in the MAX scheme, if used in the shock 
wave simulation, facilitates monotonicity of the value profiles, and in this case front 
of an infinitely strong shock is smeared over 4-5 computational intervals; 

• for all 2D problems related to the gas expansion in vacuum the simulation 
results obtained with the completely conservative scheme are more accurate than 
those obtained with the divergent and non-divergent MAX schemes. 
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