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The paper reviews the numerical simulation methods used at RFNC-
VNIIEF for various categories of multidimensional transport problems 
(linear and nonlinear, time-dependent and time- independent, etc.). It 
briefly describes, in particular, some specific features of application of the 
methods, such as Monte Carlo method and the method of angular 
coefficients (view factors), and gives a detailed analysis of deterministic 
grid methods.  Special emphasis is put on the issues concerning nonlinear 
multidimensional time-dependent linked problems, where many other 
physical processes are considered along with the transport process. 
  

Introduction 
The processes of particle transport and interaction with medium are among the most 

complex ones and numerical solution of such problems is of high labor intensiveness. 
The paper presents summaries of the numerical methods for transport problems 
developed at RFNC-VNIIEF. Various approaches to simulation of transport processes 
depending on the category of application problems and with regard to the requirements 
imposed  (completeness of a physical model, accuracy and cost-efficiency of 
computations, etc.) are used at RFNC-VNIIEF. First of all, these are the approaches 
based on the Monte Carlo method, the method of angular coefficients (view factors) and 
grid approximations to the original transport equation using the finite difference and 
finite element methods (deterministic grid methods). The paper briefly describes some 
specific features of using the first two approaches. The deterministic grid methods basing 
on the transport equation approximation with the methods of finite differences and finite 
elements are described in more details, with especial attention being paid to the 
numerical schemes and algorithms developed at RFNC-VNIIEF and intended for 
multidimensional linked problems. Consideration of many other physical processes 
along with the transport process is necessary to solve such problems and this imposes a 
number of strict requirements on the methods and algorithms to be developed.  
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Monte Carlo Method for Numerical Solution of Transport Problems 
A separate report will be devoted to the description of the specific features of Monte 

Carlo method application at our institute. So, I give here only a brief description of the 
work lines on transport process simulation using Monte Carlo method. This method is 
extensively used at our institute (Zhitnik et al., 1999), (Kochubey et al., 2000), (Donskoy 
et al., 1993) to solve problems belonging to the following categories:  

1.Linear problems of particle transport (transport of neutrons and photons, 
computations of critical parameters Кeff and λ, computations of protection against 
gamma-neutron radiation, computations of nuclear radiation safety of containers for 
transportation and storage of spent nuclear fuel, etc.). 

2.Transport of charged particles. 
3.Solution of linked problems, where the transport process is considered along with 

many other physical processes.  
We developed a number of codes to solve these problems using Monte Carlo method.  

The algorithms implemented in these codes provide a high enough accuracy of physical 
process descriptions and are highly efficient. To simulate trajectories, the method of 
maximum cross-sections is used, it provides actually the same speedup with the use of 
both spectral and multigroup constants. Thermal motion of medium nuclei is considered 
during simulation of particle trajectories on cold cross-sections of a substance (Ivanov et 
al., 2003). This allows elimination of computations of cross-sections at given 
temperatures.  The method of catastrophic collisions with Fokker-Planck approximation 
applied to describe collisions with small transfers of energy and momentum (Donskoy et 
al., 1993) is used for simulation of electron trajectories. There has been developed the 
model that simulates generation of annihilation and bremsstrahlung photons and allows a 
rather accurate description of their distribution without simulation of trajectories of 
electrons and positrons. 

The code has been parallelized using MPI library of interprocessor communications. 
The algorithms in use demonstrate high parallelization efficiency using a large enough 
number of processors. 

Another area of Monte Carlo method application to solution of transport problems is 
the development of simulation algorithms using grid geometries. The developed 
algorithms allow simulation using arbitrary grid geometries and the simulation efficiency 
actually doesn’t depend on the grid cell sizes. 

 

Computations of Radiation Transport in Vacuum Using the Method of 
View factors 

 When solving engineering heat transfer problems and laser target problems, it is 
required to consider the radiation transport in air holes of designs. For this purpose, the 
integral equation of radiation transport through an optically transparent medium 
(Babayev et al., 1978), (Zel’dovich et al., 1966), (Siegel et al., 1975), (Dementiev et al., 
1984), (Babayev et al., 1995), (Bazin et al., 1998), (Dementiev et al., 1983) should be 
solved in such regions: 
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where ( )tPJ ,+
ν , ( )tPJ ,−

ν  are single-direction frequency radiation fluxes. Further, let 
the optically transparent regions be called vacuum regions and the rest ones be diffusion 
regions, for the sake of simplicity. On the vacuum region/diffusion region interface the 
equation (1) is added by the balance equation (2):  

qtAJtAJ =− +− ),(),( , (2) 

where q is the energy flow across unit area of the boundary surface. 
To solve the problem, the grid partition is specified on the vacuum region boundary. 

The surface grid of boundary components for vacuum regions is irregular, with the 
boundary components being arbitrary plane polygons.  

Solution to the integral equation in combination with the balance equation on the 
interface between the vacuum and diffusion regions is to be found using the method of 
view factors (zonal method). The integral radiation transport equation is approximated 
by the system of linear algebraic equations relatively averaged for N boundary 
components of radiation flows: 
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The following boundary conditions close the system of equations: 

NiqtJtJ ii ,...,1,)()( ==− +− . 
(4)

 

 Factors aij in the system of equations are the so-called view factors: 
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In these factors, function Hij allows taking into account possible shading of the view 
region between surfaces Si и Sj by other bodies. The two known methods – the half-
sphere method and the half-cube method  - have been implemented to determine the 
view regions in integrals of equation (5) and calculate the view factors. Consider two 
problems of X-ray radiation transport in a cylindrical laser target schematically shown in 
Fig.1; they can serve as an example of using the radiation transport computation 
technique.   
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Figure 1.  Propagation of X-ray radiation in channel 

Numerical solution of multidimensional transport problems using the finite 
difference and finite element methods 

Grid methods (Shagaliev et al., 1999) are extensively used to solve application 
problems belonging to various categories. The methods based on finite difference and 
finite element approximations to the multigroup transport equation should be mentioned 
first among such numerical methods. These methods are extensively used at VNIIEF to 
solve a wide range of application problems, in particular, for numerical solution of linear 
and nonlinear spectral transport problems in physics of high densities and energies. Such 
computations are carried out, as a rule, in multigroup approximation in 2D and 3D 
geometries along with simultaneous consideration of many other physical processes. 
With regard to these specific features, strict requirements of a high quality of grid 
methods to be developed and used are imposed.   

The ideas underlying the numerical methods developed at VNIIEF to solve time-
dependent transport problems are given below: 

1. The time approximation to the time-dependent transport equation is constructed 
using the implicit two-point difference scheme. 

2. The transport equation approximation in space is constructed using non-orthogonal 
spatial grids, namely: 

• regular non-orthogonal grids of convex quadrangles; 
•  irregular non-orthogonal grids of arbitrarily shaped convex polygons. 

The grids above were used to construct of a number of finite difference schemes: the 
extended template scheme (Pleteneva et al., 1989), (Moskvin et al., 2005); the scheme 
with introduction of closing relations based on moment equations; the scheme based on 
the use of adaptively refined grids in phase space (Shagaliev, 2004), (Shagaliev et al., 
2004).  For the transport equation discretization in angular variables, the schemes of the 
method of discrete ordinates are used. All the schemes mentioned above have common 
features consisting in that with the use of non-orthogonal grids they preserve important 
advantages of DSn – schemes, such as the transport equation approximation within one 
cell of phase space and, hence, a possibility to resolve the system of grid equations using 
the scheme of sweep computations (point-to-point computations). At the same time, they 
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slightly differ from each other, in particular, in the accuracy of approximation using 
essentially non-orthogonal grids, support of the monotone behavior of the grid solution, 
implementation simplicity and in some other features. 

3. The method of source iterations is used to find the numerical solution to the 
system of interrelated multigroup grid equations. The algorithms accelerating 
convergence of simple iterations are used to improve the efficiency of grid equation 
system computations.  In order to accelerate convergence of simple iterations in case of 
linear time-independent problems, we have developed and successfully use the flow-
consistent acceleration method, or FCA method (Evdokimov et al., 1994), (Evdokimov 
et al., 1996), (Moskvin et al., 1996) and for nonlinear time-dependent problems KM 
method and some modifications to this method have been developed (Fedotova et al., 
1991). 

4. The sweep method (point-to-point computations) and some of its modifications 
oriented to a multigroup case (Troshchieyev et al., 1976), (Fedotova et al., 1991) are 
used for numerically solving the system of grid equations with the known right-hand 
sides.      

5. The effective combined parallelization algorithms oriented to a general case, when 
non-orthogonal spatial grids are used (Alekseyev et al., 2001), (Alekseyev et al., 1993),  
(Alekseyev et al, 1996), have been developed and used for numerical solution of 2D and 
3D transport problems on multiprocessors.  

The specific features of the computational algorithms and methods used to solve the 
transport equation with grid methods are described below in more details.   

The transport equation approximation in time, space and angular variables. The 
extended-template schemes.  

Such schemes are constructed using the values of the grid function in a quadrangular 
cell and on sides and at vertexes of this cell (Fig.2). The system of grid equations 
includes: 

Multigroup transport equation approximation
• in time: implicit scheme with weight factors;

• in angular variables: method of discrete ordinates (Sn-quadratures);

• in space variables: use of the extended template  for non-orthogonal spatial 
grids.

The key features of the extended-template scheme:
• the scheme is conservative;
• it converges to the transport equation 

solution of the second order of 
accuracy on arbitrarily shaped non-
orthogonal spatial grids;

• it meets the requirement of diffusion 
maximum in optically dense media;

• it uses quadratures of DSn-method to 
approximate the transport equation in 
angular variables.
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Figure 2. Multigroup transport equation approximation. 
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1. Grid equations of particle balance in grid cells. 

2. Additional correlations in time and angular variable ϕ 
3. Additional correlations in space variables that relate the desired function values in 

a cell, on sides and at vertexes of this cell to each other. The number of additional 
correlations in the scheme of interest depends on the number of illuminated sides of a 
quadrangular cell. Depending on the values of m,qm ,ϕμ  , three variants of illumination 
of the spatial grid cell’s sides are possible, they are shown in Fig.3. 

 
 
 
 
 
 
         a)                                             b)                                             c) 

Figure 3. Possible variants of a cell side illumination. 
In the two schemes with extended templates considered below, there are additional 

correlations corresponding to the illumination variants above and obtained using various 
methods. In scheme 1 (Pleteneva et al., 1989), additional correlations are used that are 
based on representation of the solution inside a cell in the form of a linear function. For 
the second scheme (scheme 2) (Moskvin et al., 2005) additional correlations are derived 
from an approximate representation of the solution to the transport equation along 
characteristics; this leads to the need in solving difference equations within one cell in 
two phases. 

Below given are the computation results for one test problem of finding the eigen 
values of parameter λ (Pleteneva et al., 1989), (Moskvin et al., 2005). Numerical 
computations were carried out using rectangular grids and essentially non-orthogonal 
grids. The computation results are presented in Table 1. One can see that the calculated 
values of parameter λ obtained using the both schemes satisfy the formula corresponding 

to the second-order convergence, 21647.0
k
A

−=λ , where А   is a constant close to 1. 
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Table 1. The values of parameter λ  in computations using scheme 1 and scheme 2 
for various spatial grids. 

Size of cells Grid 
h=0.1(см) h/2 h/4 h/8 

Values of λ  for various spatial grids (scheme 1) 
Rectangular 0.1627515 0.1642543 0.1646291 0.1647228 
Non-orthogonal 0.1618866 0.1639924 0.1644934 0.1646495 

 l=0.07cm l =0.035cm l=0.0175cm 
Values of λ  for various spatial grids (scheme2) 

Rectangular 0.162753 0.164256 0.164631 0.164724 
Non-orthogonal 0.161205 0.164074 0.164678 0.16477 
 l=0.1cm l=0.07cm l=0.035cm l=0.0175cm 

 
The scheme with introduction of closing relations based on the moment equations  

When constructing this scheme, the solution inside a grid cell is represented in the 
form of a bilinear expansion in space variables and angular variable ϕ: 
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where  ,
2/1q−

=′
ϕΔ
ϕϕ τη ,   are coordinates of a space point inside a grid cell 

during bilinear transformation of a quadrangle into a unit square. To find the unknown 
factors in the solution expansion, the balance equations (1)-(3) for particles in cells and 
the corresponding moment equations are used.  

Some results of numerical studies using a linear problem of particle transport in a 
cylindrical layer 20,10 ≤≤≤≤ ZR  are given below. The source and the equation 
coefficients are specified as .1,1,1 === βαQ  A zero input flow is specified on the 
boundaries parallel to R-axis and the boundary condition “mirror reflection” is specified 
on the boundary parallel to Z-axis. Figure 4 shows the profile of density function for 
particles )0(n  along the central column obtained using two schemes: the extended 
template scheme (scheme 1) and LMS scheme. 

As one can see from this figure, LMS scheme doesn’t lead to underestimation of the 
solution on Z-axis and represents the solution constant to a high enough accuracy. At the 
same time, in computations using the extended template scheme there is some deviation 
from one-dimensional solution (the deviation is about 1% in computation 1), which is 
typical for DSn-type schemes. 
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Figure 4.  The solution along the central column. 

The adaptive method of refined grids in phase space 
The idea of the method is that in phase space, where the problem solution is to be 

found, some region (which is not simply connected, in general) is separated, where the 
original grid cells are refined to obtain cells of smaller sizes. (Shagaliev, 2004), 
(Shagaliev et al., 2004). Such refinement of the grid cells can be made in space variables, 
angular variables and energy variable. 

For time-dependent problems, the region of the reference grid cell refinement is re-
determined at time steps, with special algorithms being used for this purpose. When 
approximating the transport equation in refined cells of the adaptive grid, the key 
features of the scheme used for numerical solution of the transport equation using the 
reference grid are preserved, namely, the approximation order, conservativeness of 
scheme, a possibility to solve grid transport equations using the sweep method, and some 
others.  

The example of one 2D time-dependent test problem is given below, computations 
were carried out using the adaptive method of grid refinement in space variables. The 
computational domain consists of two physical regions: region 1 is a dense casing 
{0 ≤ Z ≤ 5; 1 ≤ R ≤ 1,2}, region 2 is transparent {0 ≤ Z ≤ 5; 0 ≤ R ≤ 1}. Photon 
absorption is taken into account during computations, with the photon absorption cross-
section being specified by the equation χa= A/T3 , where  А=50.89  in region 1 and 
А=0.1374  in region 2. 

0

region 2

R

5

1
1.2 region 1

Z
 

Figure 5. The system geometry for the 2D test problem. 

The absorption cross-section was taken zero (χs= 0) in computations. The initial 
temperature T at all points of the system was assumed to be 0,0001. An input isotropic 
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radiation flow corresponding to temperature Т = 1 was specified for a part of the left end 
of the rectangular region. The equation describing the photon transport process and 
radiation interactions with medium was essentially two-dimensional in the problem 
under consideration.  

To describe spatial grids used for computations, the following notations are used: 
Nr(Pr)×Nz(Pz), where Nr is the number of rows, Nz is the number of columns, Pr is the 
maximum adaptability level in rows (MaxAdapt), Pz is the maximum adaptability level 
in columns. The results of computations for the 2D test problem using adaptive grids of 
sizes 10(4)×50(4) and 10(8)×50(8) are shown in Fig.6, the numerical solutions obtained 
using some spatial grids without adaptive refinement are also shown, for comparison. As 
one can see from the plots presented, the solution obtained with the adaptive technique 
using the grid of size 10(8)×50(8) is close to the one obtained with the standard 
technique using the grid of size 40×200, with the adaptive computation requiring less 
time (by a factor of 2.8). 

 
Figure 6. The material temperature profiles along line Z = 2 at time t=0,01 obtained 

for the 2D test problem using various reference grids: —— – basic grid 40×200; – – – – 
grid 20×100; ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ – grid 10×50; – – – – grid 10(4)×50(4); —— – grid 10(8)×50(8) 

Algorithms accelerating convergence of iterative processes  
To provide efficient computations of multigroup grid transport equations, it is 

important to use efficient convergence-accelerating algorithms of the traditionally used 
method of iterations in the right-hand side (source) of the transport equation.  

For linear time-independent transport problems, we developed and successfully use   
the flow-consistent acceleration method (FCA method). Brief formulation of the idea of 
this method and some results of its numerical studies are given below.  

FCA Method (the Flow-Consistent Acceleration  Method). 
In FCA method (Evdokimov et al., 1994), (Evdokimov et al., 1996) the desired 

functions are functions of a single-direction flow. The grid values of these functions are 
introduced on edges and mid lines of cells. The equations for the first moments and zero 
moment of function N containing the compensating sources to match the acceleration 
phase solutions and solve a simple iteration are introduced. Use of FCA method allows 
reduction in time for computations in optically dense systems. 

Table 2 and 3 below give examples of FCA application to accelerate convergence of 
simple iterations  (N/A method) in the test problem with pure scattering, which is solved 
within a cubic region, and in the 2D test problem of RBMK reactor.  
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Table 2. Region {0<x<1.5, 0<y<1.5, 0<z<1.5} 

2D 3D α  β  
N/A FCA N/A FCA 

10. 9. 81 7 116 12 

10. 9.9 331 7 300 13 

10. 9.99 463 7 361 13 

10. 10. 482 7 370 13 

Table 3. Computation results for a channel of RBMK reactor. 

Method Number of iterations 

Kellog method 229 

Direct method 412 

Method of iterations in source 555 

Method of iterations in source + FCA 42 

Method of iteration in source + FCA + + 
Chebyshev method 

24 

Convergence and efficiency of speedup methods are of critical importance, if one 
solves nonlinear time-dependent multigroup problems of X-ray radiation transport. For 
this category of problems we developed in the 80’s and later improved the so-called KM 
method (Fedotova et al., 1991). The idea of this method is given below, along with the 
results of comparative computations for one time-dependent test problem.  

KM method. 
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Table 4 gives the results of computations using KM method for one test problem. 
Table 4. The results of computations with KM method for one test problem.  

10101.0 −⋅=Δt s 10105.0 −⋅=Δt s 9101.0 −⋅=Δt s Step 
No. 

Pre- 
iteration 

KM KM3 Pre-
iteration 

KM KM3 Pre-
iteration 

KM KM3 

1 19108 14 14 28696 26 26 26454 35 35 

5 3332 24 20 6363 121 88 7960 238 174 

10 1559 27 20 8477 101 75 9146 179 135 

t( s) 2880 61 47 7020 233 184 8580 435 347 

 
Parallelization algorithms 

As it was already mentioned above, numerical simulation of many various 
categories of multidimensional time-dependent transport problems leads to a heavy 
computational burden. We developed effective methods of fine-grain parallelization 
oriented to a general case of using non-orthogonal spatial grids to the problems above in 
2D and 3D space approximations on multiprocessor systems (Alekseyev et al., 2001) 
(Alekseyev et al., 1993) (Alekseyev et al., 1996).  These parallelization algorithms are to 
be presented at the conference in a separate report. Here, I only demonstrate their 
efficiency by the example of one 3D test problem.  The problem parameters are: 8 
energy groups, 96 particle flight directions (S8), 250000 three-dimensional spatial cells. 
The efficiency is estimated using the method of increase.  The problem size remains 

unchanged on each processor. 
N

N T
NT

Sp
*1= . The computations results are shown in 

Fig.7. 
 
 
 
 
 
 
 

 

Figure 7. The speedup versus the number of processors. 
To demonstrate capabilities of the developed methods, an example of computations 

for one demo problem (Figs.8 and 9) describing the experiments carried out on laser 
facility ISKRA (spark) is given below (Bel’kov et al., 2004).   
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Numerical simulation of experiments using ISKRA-5 laser

 

4

1
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2

I
II
III

1- holder, 

2- laser beams, 

3- «ILLUMINATOR», 

4 – cylindrical box, 

 I –   III – locations of the 

materials to be studied. 

 
Figure 8. Statement of the problem on simulation of the experiment on laser facility 

ISKRA-5 

a) b)  

Figure 9. The effective radiation temperature distribution (a) and the distribution of 
electrons (b) inside a cylinder at time 5 ns. The length scale - 100 μm, the temperature 

scale – KeV. 
 

Conclusion 
The transport equation is currently extensively used during simulation of various 

physical processes. Finding the numerical solutions to the problems of this category is 
accompanied with high computational costs. So, it’s important to use numerical methods 
that allow a comprehensive consideration of the specific features of statements of the 
problems to be solved and the behavior of solutions of certain categories of application 
transport problems and provide, thereby, the required accuracy of computations in the 
most effective manner. 

The paper presents an overview of numerical methods developed and used at RFNC-
VNIIEF to solve multidimensional transport problems. These are the approaches based 
on Monte Carlo method, the method of angular coefficients (view factors) and grid 
approximations to the original transport equation using the method of finite difference 
and finite elements (deterministic grid methods). The paper briefly describes some 
specific features of the first two approaches. It contains a more detailed consideration of 
deterministic grid methods based on approximations to the transport equation using the 
finite difference and finite element methods with emphasis put on the methods algorithms 
and schemes for numerically solving multidimensional linked transport problems, in 
which, first, support of the required accuracy of computations using non-orthogonal 
spatial grids and, second, the efficiency of solving the transport equation on 
multiprocessors are of especial importance.  
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