DS,-method with artificial dissipation and DMT-method of iteration
acceleration for the numerical solution of 2D heat transfer equations
in kinetic approximation
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This report discusses the DDAD technique used to solve the problem of radiation transport,
accounting for the radiation spectrum, in 2D axi-symmetric geometry. The technique is based on
the DS, - method of solving the kinetic equation.

The DDAD technique solves the transport equation within the framework of the linear two-
point scheme. The idea of this technique is in the introduction of the specially selected artificial
dissipation depending on the optical thickness. Thus constructed scheme was called DDAD-
(Diamond Difference with the Artificial Dissipation) scheme.

Acceleration of the iteration convergence is a very important factor in improving efficiency
of simulations solving the equations of radiation transport. To accelerate the iteration
convergence, the diagonal matrix technique (DMT) is implemented in the DDAD technique. If,
similarly to Jacoby iterations, radiation density at some point in the system of radiation transport
equations is expressed via the Planck function at the same point, and then substituted in the
energy equation, the obtained system of the equations will give a diagonal matrix with respect to
temperature. Using the obtained temperature, it is possible to solve the initial system either by
running 1D case or with iteration methods in 2D case.

Section 1 of the report describes the DDAD numerical technique. Section 2 analyzes the
results of simulation of the test problems.



1. Numerical technique DDAD

Considers a 2D non-stationary equation of radiation transport with axial symmetry in
multi-group approximation:

dJ, ~ a, .
+diQJ, |+ =2|J dO+—=% , 2=12,....G, 1.1
- O )+ T, 4”£ 2B (D), 8 (1.1)

where ¢ is time, c is velocity of light, p is material density, 7 is material temperature,

Qisa unity vector in the direction of photon path,
g is group index, g =1.2,...,G, &, is energy of photons in g group,

J (1,2, 1,9) = IJ (t,r,z, 1, ¢,€)de 1is radiation intensity of g -group photons flying in
Ag

Q direction,
a,(t,7) 1s an attenuation coefficient of the g -group photons,

o (t,7) 1s an absorption coefficient of the g -group photons,

o (,7) 1s coefficient of scattering of photons from the g -group,
3

= 8z J. £ de is the Planck function for the g -group, & is the Planck constant.

Az exp? -1

The following energy equation is solved jointly with the equations of radiation transport

(1.1):
E S 1o =
pg—;acgi(Jg—EBg)dQ+pQ, (1.2)

where Q is an external source.
Numerical algorithm exploits the transport equation written in cylindrical coordinates
(r,z) . For the kinetic equations, coordinate form of operator div(€J) is as follows:

aie)= &) 2 ()= w) (1.3

where 1 =cos0,& =+1— 1 cosg,n =+/1— 1 sing,

@ is an angle between Q and axis Z, ¢ is an angle between 7 and projection of Q onto the

plane perpendicular to the z axis.
An arbitrary quadrilateral mesh with nodes (r,z);; is used for space coordinates, and ES,-
quadrature [2] is used for the angles x# and ¢ .

Integrating equation (1.1) over the mesh cell, obtain:

oy -yl dm@ry e -or, (1.4)
Q;H — L(asg U;H + Cleg B;H)’
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Fractional indices are omitted as usual. For example, J"' =(J )" | | .
i+—, j+—k——m—
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Difference operator div, (-) has the following meaning:

= . B, AS, A (1]
div, () = [A(CiAIrT ) + A (QidlrT )] ASy A(J,)
g AI/U g J g AI/U A¢k

(QﬁAl)i =+¢Az; — pAr, =+8(z; 1y —2,;) — u(1, — 1),
(QﬁAl)j =—CAz; + plr; = =G(2,,y ; = 2,;) + 11 ;= 1)
where indices (i,j) are cell indices; k=1,2,..,K,; m=12,.,M .
To ensure closure, the system of equations of the DS, -technique (1.4) is supplemented

b

with the boundary conditions and relationships between the values, which J has at the center and
sides of the cells. These relations are constructed in compliance with the flux direction at the
sides.

The characteristic feature of radiation transport problems is that optic densities vary
widely through space and time. High densities bring large problems for the method of discrete
coordinates, causing non-monotonicity in the solution. This is the result of anti-dissipation terms
in the remainder of the second order scheme (DD-scheme).

To improve monotonic properties of the DS, -technique with respect to special variables,

artificial dissipation is introduced:

1 +1 . ~
E[(Jg)” (7, )]+ div, ©@¥,) + a0, =0, (1.5)
where dissipative function of distribution ‘¥, is in the following relation with function J,
J, =W, +8,hdiv,(O¥,) - 0,hdiv, (00, ), (1.6)

. . C : ~ 1
where /1 is a linear size of a cell, &, ,0, are dissipation coefficients, 0, =0, + Y (J gy .

Substituting the expression of ¥ for J in (1.5) yields a transport equation with artificial
dissipation and additional summands with second derivatives.

1 n+l n . . . _ ' L
E[(‘]g) _(Jg) :|+dlvh(QJg)+ang =0, +0,hdiv,(QUJ ) —0,hdiv, (QQg)+0(h2).

By selecting the coefficients J,,6, we try to suppress anti-dissipation resulted in the DD-

scheme.
Substituting J from (1.6) in (1.5), obtain an equation of ¥ function:
@\, +(1+6,ha, v, Q¥,) =@, {% +@,0,Ahdiv, (Q %ﬂ : (1.7)
g g

~ 1 : ~ . : . .
where @, = N +a, . Assuming that parameter @, is constant in the cell under consideration, it
CAt

is introduced under the sign div, (ﬁéé)
In the iteration solution of the transport equation, O, value in (1.7) is taken from previous
outer iteration, i.e. O, . Since the obtained system of equations is integral-differential, an

iteration method is applied with respect to the right-hand side of the transport equation
incorporating the collision integral and independent source in the form of the Planck function:
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Qg - E(angg + achg (T ))’ (9
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div, (QQ,) = A_I/l][Ai(QnAlng )+ A, (QnAlrQ, )]_ AVlj/ Ag, -

Here (O, values at the cell sides are determined as half-sums at the centers of the adjacent cells.

~

Introducing the reduced absorption coefficient ¢, = write down Eq. (1.7) as

_ Te
~ b
1+5ghag

a.¥, +div,(Q¥,) =a.0., (1.9)

e O, = % +a,0,hdiv, (Q%J :
g g
Parameters 0,,0, are selected from the conditions of infinitesimal of J, =¥, = O(sz)

and monotonic properties of the solution to Eq. (1.9) in optically thick medium. To solve
Eq. (1.9), apply discrete coordinate method of the second order of accuracy (DD-scheme).
Construction of the scheme itself and method for solving the difference equations based on the
ordering are similar to those used in Ref. /9/.

The obtained scheme can be presented in the mesh-characteristic form:
a* (\Pg )s+l + (‘Pg )s + (‘Pg )s+l — (\Pg )s * )k

. . e =a.0., (1.10)

s

(ng )3+1 B (\Pg )S ‘

Ax

s

div,(Q¥,) =

Here W, —is a value of function W at the point where the characteristic cuts the hyperplane

passing through the centers of the lit sides; ¥ ,, — is a value of function ¥ at the point where

s+l
the characteristic cuts the hyperplane passing through the centers of the unlit sides;
Ax, =x,,, —x, 1s a distance between these two points along the characteristic. Depending on the
number of the lit and unlit sides, obtain formulas for ¥, ,,, Ax,:

s+1 2

. AS. R As, T
v - [— S (Giiairw), + A_¢qu]k}[_ S (Giialr), + ¥ m} :

! ! k
! —index of a lit side;

-1
- AS - AS
Y., = {z (QﬁAl”LP)ﬁ +—" M Ve } {z (QﬁAlr)ﬁ +—" 77k+1:| s
£ A¢k £ A¢k
£— index of a unlit side;

xe, = oV, S @iark+ g | = av, - Y (@) + |
L A ' A

k / k

Now select parameters 0,6, so that solutions to Egs. (1.10) coincide with the exact solution to

the initial transport equation in the characteristic form within the interval [x, < x < x_,]:

J, . ~
+a,J, =0

. (1.12)

g-

Assume &, to be constant in the cell within the interval [x ,x ] and 0 , to be linear:



Then obtain

Vo), =ewl-a,ax ), + (1 -expl-a,ax,)

0).-) 1) (g) eof ann)

g K g
Then assuming equality of the values at the lit sides (‘I’g )S = (J < )S, require output values to be

the same (‘Pg )m = (J < )s+l . Selecting 6, parameter from this value, obtain

1+ expl—a, Ax,
5o Llrevban) 1 -, _ L5 h=n,. (1.13)
¢ 21-expl-@,Ax,) @Ax,’ ¢,
Then difference J, —'¥, becomes as follows
SAx (o (.0
Ty, == di, (G, (@, )+ (5,Ac) dith(dith %} (1.14)
4 4

Now estimate value of J, — ¥, taking into account that 0 <5, <0.5, 0<a Ax<2. At

a,Ax <1 taking a Taylor series expansion of exp(— @Ax), derive the following estimate

0,Ax 5 Ax 2
(1465, A0a, )= 22+ 0(Ax). And if aAx>1, then
a. 2 ¢
4 4
0, Ax 5 Ax
(5 Ax)2 <26, Ax* < Ax*. Based on this, obtain the following estimate
a. a

g 4
J, -¥, =0(Ax?).
So we have the following. Instead of solving Eq. (1.4), where optical thickness &,Ax

might be large and application of the DD-scheme would lead to significant approximation-
induced oscillations, we solve Egs. (1.9) with respect to dissipative function W, . In this new

problem, optical thickness is small &, Ax <2 and application of the DD-scheme would not lead
to the oscillations mentioned above. At the same time solution of the new problem is close to
solution of the initial one: J, — ¥, = O(Ax2 )

Using the selected parameters (1.13), start solving transport equation (1.7) with the DD-
scheme. Computation is done according to the recurrent scheme with the ordering procedure
/10/. If in some cell Y, <0 for some direction, this means that in this cell we transit to the first-

order scheme (8, = 0.5, 6, =0.5), i.e. computation is done according to the DD/St-scheme.

After values of ¥, are determined, obtain radiation intensity at the cell center:

Jn Qi v o 1 v+l/
{(Q gt)AV,-j - [Ai(QnAll”‘Pg 1/2) + AA/(QHAZI"Pg 1 2)]_

g [+5,j+5,k—5,m—5 AV 1 15
A ( lPV+1/2) ( ) )
_as 2KV O
A

Then the next cell is computed and so on until all cells are processed in this specific direction
Q, ., m1/2- Then a loop over directions Q is done till al directions are treated for a specific

group. After that we start treating next group g till all groups are considered. When this work is
finished, the second stage (acceleration) is started.
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As a rule, simple source iterations converge slowly, especially in presence of optically
dense layers. So, acceleration of the iteration convergence is a very important factor in
improving efficiency of simulations solving the equations of radiation transport.

To accelerate the iteration convergence, the diagonal matrix technique (DMT) is
implemented in the DDAD technique. This approach was earlier used in [5] and [6]. It is easier
than the diffusion-synthetic method (DSA-method [7]) but helps significantly accelerate simple
iterations though conceding the DSA method on the convergence rate. The DMT was adapted to
the DDAD-scheme on arbitrary quadrilateral meshes [1]. If, similarly to Jacoby-type iterations,
radiation density at some point in the system of radiation transport equations is expressed via the
Planck function at the same point, and then substituted in the energy equation, the obtained
system of equations will give a diagonal matrix with respect to temperature. Using the obtained
temperature, it is possible to solve the initial system either by running 1D case or with iteration
methods in 2D case. This approach in 1D plane case was proposed in Ref. /11/ for the first-order
scheme. In the presented technique this approach is applied to the second-order DDAD-scheme
in 2D case.

Consider the energy equation, which is being solved jointly with the radiation transport

equation:
E'1+1 En ¢ n+ n+
NV Z a., (U™ =B+ pQ,

where B;” =B ( "”).

Energy equation for the v +1-th iteration:

G
p(Ev+l _ En) = A" Z acg (U;+l _ B;H) + Afan.
g=1
Linearize the internal energy and the Planck function with respect to temperature:

[E"H(T)]Hl _ [En+l ]k _I_Ek( e+l _Tk)
[B;:H(T ]K [Bn+1 ]"+Bk (Tk+l ))

OB
where E} = (2—?) B, = (a—;j .

From the transport system derive U ;” :

v+l v+1/2 v+l v+1/2 v+l v
U{g —U{g +AUg —U{g +bg(B(g —Bg), (1.16)
(94
b = £
where “¢ ’
L_'_a +dv+l/2
cAt
AV ZZ( LPHM)/{ Y2,m- YPYAVZAYAY A
dv+1/2 ij m=1k=1
g vil/2
Ug+

. . V+l . . . . . . .
Substituting U, in the energy equation linearized with respect to temperature, obtain:

Tk“=Tk+{p(E”—Ek)+At”pQ+At”i[a (2 +b,(B(T*)-B))-a, g(Tk)]}

x{pE; +Ati[acg(l—bg)]B§T} .
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When Newton iterations k converge, obtain temperature 7" =T*"". Using the new
temperature obtain Bg“ at the cell center and density UgV+l according to formula (1.16). Outer

iterations v are done when U™ and T""' converge.
2. Numerical calculations of the test problems

Test 1. Solution of the system of non-stationary radiation transport equations
accounting for radiation spectrum and ignoring scattering due to non-homogeneous
medium (the Fleck problem).

Planck radiation flux corresponding to the material temperature of T=1 hits the surface of a
4cm-thick flat layer. The layer consists of three physical regions. Since the DDAD technique is
good for axi-symmetrical geometry, the flat layer in each problem under consideration is
replaced with a spherical one located at the distance of 100 cm from the axis of symmetry

(Fig.1).

r1

Region 3

Region 2

Region 1

ro

ra
104 -102.4 -102 -100 ; 100 102 102.4 104

Fig.1 Problem geometry.
This problem is interesting since the standard iteration method gives very slow
convergence, therefore, acceleration is needed.
Spectral boundary conditions at the upper boundary I'l were as follows: J, =0 at

Q-7i <0 (free surface). At the lower boundary T'0 they were: J, = ! B, (T=1) at Q-i<0.

4r
Boundary conditions at the axis of symmetry Z (boundaries I'2 and I'3) were implemented by

exploiting symmetry J,(£,0,z, i,) =J (8,0, z, u,w =), y < % .
The absorption coefficient was calculated by formulae, = 24=¢77) x =27 in regions 1

°
83

and 3, and y = 10000 in region 2. The scattering coefficient was - «, =0.

—S/T)

Initial temperature in regions 1, 2 and 3 was T; 3 =0.001, the equation of state was E; >3 =
0.81T, and material density was p;23=1.

For energy variable the calculations used the following mesh: g, =15.0, 12.0, 10.0, 8.0, 7.0,
6.0,5.5,5.0,4.5,4.0,3.5,3.0,2.6,2.2,1.8,14,1.0,0.7,0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.08, 0.06,
0.04, 0.02, 0.0 (28 groups).
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The mesh in the direction space Q corresponds to the ES, quadrature.

In terms of space intervals in radial direction, the mesh was non-uniform in each region
and used the formula: 100+r; , where )= 0, 0.004, 0.04, »,=0.1, ..., r»» = 1.9 (18 uniform
intervals with A4r = 0.1), 723 = 1.987, 1.999, 2, 2.001, 2.004, 2.013, r9=2.04,...,r3;=2.36
(8 uniform intervals with A4r = 0.04), r33 = 2.396, 2.4, 2.404, 244, r,,=2.5,...,r57=4 (15
uniform intervals with Ar = 0.1) (i = 57). Number of intervals in regions 1, 2, and 3 was 24, 14,
and 18, respectively. In terms of angular spacing, the mesh was uniform with 40 intervals in each
region.

Time step was T = 0.0002. At each time step the solution was iteratively calculated till
accuracy of 0.1% (e.x=0.001) was reached for the calculated material temperature. Calculations
were done according to the first- and second-order approximation. First-order St-scheme was
calculated with parameters 6 =0.5, 8 =0.5. The classic DD/St-scheme leads to divergence of
iterations.

Though the unity temperature follows from the boundary conditions, numerical
calculations did not give it. The reason is that the boundary conditions are specified for the
intensity, and temperature at the boundary was calculated from the energy equation. Temperature
at the boundary was less than a unity and approached it when radiation-emitting region heated

up.

The calculation results are given in the plots showing material temperature versus spatial
variable. Figure 2 presents profiles of material temperature obtained with the first-order (St-
scheme) and second-order (DDAD-scheme) schemes on the coarse (56 intervals in radius) mesh
at computational time ct=9 cm. The results are compared with the exact solution obtained on the

fine mesh (4000 points in radial direction).
1,0 4

- Precision
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Fig. 2 Profile of the material temperature at ct =9 cm.

Figure 2 shows that the first-order scheme, unlike the second-order one, smears the front of
the heat wave traveling through the optically thick medium (the 2™ region).

Figure 3 shows profiles of the material temperature obtained with the first-order (St-
scheme) and second-order (DDAD-scheme) schemes on a fine (168 intervals in radial direction)
mesh and a coarse (56 intervals in radial direction) one at the computational time ct=400 cm. At
ct=400 cm the solution becomes stationary and is compared to the exact solution obtained at
4000 points on the radius.
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Fig.3 Profile of the material temperature at ct=400.

From Fig.3 it is obvious that DDAD-scheme of the second order gives a monotonic profile
close to the exact solution. If compared with the first-order St-scheme, DDAD-scheme with
mesh refining gives a faster convergence to the exact solution.

Test 2. The exact solution of a system of non-stationary spectral radiation
transport equations with no account for scattering in the homogeneous medium

3
Radiation of intensity J g = 2% - , or T=5(t—0.0466x,), is incident
(0.04 —0.037(Q))[e” —1]
on a plane layer 4 cm thick. The layer contains one physical region. The initial temperature in
the region is T=0.01, the equation of state is E=152.73T"; material density is p=1. The

&g/ T

€g€

4T2(e'T —1)
To obtain a 2D axially symmetric configuration, the planar layer is replaced by a spherical
one 100 cm distant from the symmetry axis (Fig.1).
Boundary conditions

I':J,=0 for Q-7 <0 (free surface)

absorption factor was calculated as a, = . The scattering factor was o, =0.

. 2¢&]
[0:J,(x, =100,2,(Qii) < 0) = £ , x=~Nr’+z’

&

[0.04 — 0.037(C3ii)][e M50 _ 1]

2, I'3 (the symmetry axis Z): J,(£,0,z, u, ) = J (1,0, z, s, m =), y < %

Initial conditions

t=4.66, J, (ty, 7z, 14, ) =0

Energy intervals: g, =15.0, 12.0, 10.0, 8.0, 7.0, 6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.6, 2.2, 1.8,
1.4,1.0,0.7,0.5,0.4,0.3,0.2,0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.0 (28 groups)

The mesh in the direction space Q corresponds to the ES, quadrature.
Radial spacing: 40 intervals of equal length (4 = 0.1)

Angular spacing: 40 intervals of equal length

4

Constant time step At=2-10"
Temperature iteration convergence constant &, =0.0001
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The numerical solution was compared with the analog of the exact solution /2,3/ obtained
for the 1D plane case:

- {S(t —0.0466x), >0.0466x, x=~r"+2°,

0, £ <0.0466x,
3
_200v . 1>0.0466x,
J, =4(4-3.7(Ci)) fexp[v/T] - 1}
0, £ < 0.0466x.

The calculation was run until the heat wave reached the right boundary, i.e., to t = 4.85.
Figure 4 shows temperatures obtained with the first-order St-scheme and the second-order
DDAD-scheme for times t =4.7, 4.75, 4.8, 4.85.

1,0 4

Jt=4.85
0,8

777777 Precision
—e— St

0,6 ] t=4.8 —0— DDAD

] t=4.75

0,2
1t=47

0,0 ]

Fig. 4. Temperatures at times t = 4.7, 4.75, 4.8, 4.85

It is obvious, that the obtained solutions are in a good agreement with the exact solution.

Test 3: The exact solution of a system of non-steady ‘gray’ radiation transport
equations with no account for scattering in the two-material region

29(307 +1000¢)
90 + 87(Qii)
on a flat layer that is 5 cm thick and consists of two materials of unit density.

1.2427* x €[101,103],
10.047T* x €[103,106].

Scattering factor: «, =0.

, or T =0.1954/10007 + 307 , is incident

“Gray” radiation of intensity J =

Equation of state: E = {

The absorption factor is calculated as
(981.18T4)_l ,x €[101,103],

a, = ~
{(327.06T4) ' x €[103,106].

To obtain a 2D axially symmetric configuration, the planar layer is replaced by a spherical
one 100 cm distant from the symmetry axis (Fig.1).
Boundary conditions

T1: J(x, = 106,1,(§i) < 0) = 22C18 10000~ fo7a
90 + 87(Coit)




11

T0: J(x, = 100z, Qi) < 0) = 2230710000 = o
90 + 87(C2it)

2, I'3 (symmetry axis Z): J(£,0,z, 1, ) =J (.0, z, u, m — ), < %

Initial conditions
For #=0, a continuous function J, and a piecewise continuous function 7 are defined:

2(x+200) 101103, x=Ar 427,
90 + 87(C)

87x
90 + 87(Qi)”
and piecewise-continuous function T:

T ”)_{0.195m, xe[101103), x=+r+2°,
0° b -

0.244/x, x (103,106].

J(to,l’,Z,ﬂ,l//) =
x €[103,106],

The mesh in the direction space Q corresponds to the ES, quadrature.

Radial spacing: 40 intervals of equal length in region 1 (Ar=0.05) and 40 intervals of equal
length in region 2 (Ar=0.075))

Angular spacing: 40 intervals of equal length

Constant time step At=2* 1074

Temperature iteration convergence constant ¢, =0.0001
The numerical solution was compared with the analog of the exact solution /4,5/ obtained

for the 1D plane case:
29(x + 1000z + 206) . xe[l01103], x= m,

90 + 87(Qi)
TR 1Y) =1 053+ 1000
Gx+10000) = ho3,106],
90 + 87(Cii)
rr) 0.1954/x +1000¢+ 206, x €[101,103), x=+/r> +2°,
b ’Z =
0.1824/3x + 1000z, x € (103,106].

Figure 5 shows temperatures obtained with the DDAD-scheme on fine (40+40) and
coarse (5+5) meshes for t =0.005, 0.01.

0,83
t=0.01

0,82

0,81

0,80

0,794 --- - Precision
—— DDAD(5+5)
—o— DDAD(40+40)

0,78

0,77

0,76 I+t SR SR s s .

Fig. 5. Temperatures at t = 0.005, 0.01
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It is obvious from Fig.5 that the solution obtained on the fine mesh agrees rather well with the
exact solution.

Conclusion

As shown by calculations, the DDAD scheme in combination with the DMT-method of iteration
acceleration performs rather effectively in the simulation of thermal radiation transport with the
multi-group kinetic model on arbitrary quadrilateral meshes.
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