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This report discusses the DDAD technique used to solve the problem of radiation transport, 

accounting for the radiation spectrum, in 2D axi-symmetric geometry.  The technique is based on 
the nDS - method of solving the kinetic equation.  

The DDAD technique solves the transport equation within the framework of the linear two-
point scheme. The idea of this technique is in the introduction of the specially selected artificial 
dissipation depending on the optical thickness.  Thus constructed scheme was called DDAD- 
(Diamond Difference with the Artificial Dissipation) scheme. 

Acceleration of the iteration convergence is a very important factor in improving efficiency 
of simulations solving the equations of radiation transport.  To accelerate the iteration 
convergence, the diagonal matrix technique (DMT) is implemented in the DDAD technique. If, 
similarly to Jacoby iterations, radiation density at some point in the system of radiation transport 
equations is expressed via the Planck function at the same point, and then substituted in the 
energy equation, the obtained system of the equations will give a diagonal matrix with respect to 
temperature.  Using the obtained temperature, it is possible to solve the initial system either by 
running 1D case or with iteration methods in 2D case.  

Section 1 of the report describes the DDAD numerical technique. Section 2 analyzes the 
results of simulation of the test problems. 
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1. Numerical technique DDAD 
 

Considers a 2D non-stationary equation of radiation transport with axial symmetry in 
multi-group approximation: 
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where    t  is time, c  is velocity of light, ρ  is material density,T  is material temperature, 

Ω is a unity vector in the direction of photon path, 
g is group index, Gg ,...,2,1= , gε  is energy of photons in g  group, 
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),( rtgα  is an attenuation coefficient of the g -group photons, 

),( rtcgα  is an absorption coefficient of the g -group photons, 
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32  is the Planck function for the g -group, h  is the Planck constant. 

The following energy equation is solved jointly with the equations of radiation transport 
(1.1): 
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where Q  is an external source. 
Numerical algorithm exploits the transport equation written in cylindrical coordinates 

),( zr . For the kinetic equations, coordinate form of operator )( Jdiv Ω  is as follows: 
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where ,sin1,cos1,cos 22 φµηφµξθµ −=−==  

θ  is an angle between Ω  and axis z , φ  is an angle between r  and projection of Ω  onto the 
plane perpendicular to the z  axis. 

An arbitrary quadrilateral mesh with nodes (r,z)ij is used for space coordinates, and ESn-
quadrature [2] is used for the angles µ  and φ . 

Integrating equation (1.1) over the mesh cell, obtain: 
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Difference operator )(⋅hdiv  has the following meaning: 
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where indices ( )j,i  are cell indices; mKk ,...,2,1= ; Mm ,...,2,1= . 
To ensure closure, the system of equations of the nDS -technique (1.4) is supplemented 

with the boundary conditions and relationships between the values, which J has at the center and 
sides of the cells.  These relations are constructed in compliance with the flux direction at the 
sides. 

The characteristic feature of radiation transport problems is that optic densities vary 
widely through space and time.  High densities bring large problems for the method of discrete 
coordinates, causing non-monotonicity in the solution.  This is the result of anti-dissipation terms 
in the remainder of the second order scheme (DD-scheme). 

To improve monotonic properties of the nDS -technique with respect to special variables, 
artificial dissipation is introduced: 

( ) ( )[ ] ggggh
n

g
n

g QJdivJJ
tc

=+ΨΩ+−
∆

+ α)(1 1 ,     (1.5) 

where dissipative function of distribution gΨ  is in the following relation with function gJ  
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Substituting the expression of Ψ  for J  in (1.5) yields a transport equation with artificial 
dissipation and additional summands with second derivatives. 
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By selecting the coefficients gg θδ ,  we try to suppress anti-dissipation resulted in the DD-
scheme. 

Substituting J  from (1.6) in (1.5), obtain an equation of Ψ  function: 
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where gg t
αα +

∆
=
c
1~ . Assuming that parameter gα~  is constant in the cell under consideration, it 

is introduced under the sign ( )gh Qdiv ~Ω . 
In the iteration solution of the transport equation, gQ  value in (1.7) is taken from previous 

outer iteration, i.e. ν
gQ . Since the obtained system of equations is integral-differential, an 

iteration method is applied with respect to the right-hand side of the transport equation 
incorporating the collision integral and independent source in the form of the Planck function: 
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Here ν
gQ  values at the cell sides are determined as half-sums at the centers of the adjacent cells. 
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 Parameters gg θδ ,  are selected from the conditions of infinitesimal of ( )2xOJ gg ∆=Ψ−  
and monotonic properties of the solution to Eq. (1.9) in optically thick medium.  To solve 
Eq. (1.9), apply discrete coordinate method of the second order of accuracy (DD-scheme). 
Construction of the scheme itself and method for solving the difference equations based on the 
ordering are similar to those used in Ref. /9/.  
 The obtained scheme can be presented in the mesh-characteristic form: 
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Here −Ψs is a value of function Ψ  at the point where the characteristic cuts the hyperplane 
passing through the centers of the lit sides; −Ψ +1s  is a value of function Ψ  at the point where 
the characteristic cuts the hyperplane passing through the centers of the unlit sides; 

sss xxx −=∆ +1  is a distance between these two points along the characteristic. Depending on the 
number of the lit and unlit sides, obtain formulas for sΨ , 1+Ψs , sx∆ : 
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Now select parameters gg θδ ,  so that solutions to Eqs. (1.10) coincide with the exact solution to 
the initial transport equation in the characteristic form within the interval [ ]1+≤≤ ss xxx : 
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Assume gα~ to be constant in the cell within the interval ],[ 1+ss xx  and gQ~ to be linear: 
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Then difference ggJ Ψ−  becomes as follows 
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 Now estimate value of ggJ Ψ−  taking into account that 20,5.00 ≤∆≤≤≤ ∗ xgg αδ . At 
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So we have the following. Instead of solving Eq. (1.4), where optical thickness xg∆α~  

might be large and application of the DD-scheme would lead to significant approximation-
induced oscillations, we solve Eqs. (1.9) with respect to dissipative function gΨ . In this new 

problem, optical thickness is small 2<∆∗ xgα  and application of the DD-scheme would not lead 
to the oscillations mentioned above.  At the same time solution of the new problem is close to 
solution of the initial one: ( )2xOJ gg ∆=Ψ− . 
 Using the selected parameters (1.13), start solving transport equation (1.7) with the DD-
scheme.  Computation is done according to the recurrent scheme with the ordering procedure 
/10/. If in some cell 0<Ψg  for some direction, this means that in this cell we transit to the first-
order scheme ( ,5.0=gδ  5.0=gθ ), i.e. computation is done according to the DD/St-scheme. 

After values of gΨ  are determined, obtain radiation intensity at the cell center: 
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Then the next cell is computed and so on until all cells are processed in this specific direction 
2/1,2/1 −−Ω mk . Then a loop over directions Ω is done till al directions are treated for a specific 

group. After that we start treating next group g  till all groups are considered.  When this work is 
finished, the second stage (acceleration) is started. 
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As a rule, simple source iterations converge slowly, especially in presence of optically 
dense layers.  So, acceleration of the iteration convergence is a very important factor in 
improving efficiency of simulations solving the equations of radiation transport.  

 
To accelerate the iteration convergence, the diagonal matrix technique (DMT) is 

implemented in the DDAD technique.  This approach was earlier used in [5] and [6]. It is easier 
than the diffusion-synthetic method (DSA-method [7]) but helps significantly accelerate simple 
iterations though conceding the DSA method on the convergence rate.  The DMT was adapted to 
the DDAD-scheme on arbitrary quadrilateral meshes [1]. If, similarly to Jacoby-type iterations, 
radiation density at some point in the system of radiation transport equations is expressed via the 
Planck function at the same point, and then substituted in the energy equation, the obtained 
system of equations will give a diagonal matrix with respect to temperature.  Using the obtained 
temperature, it is possible to solve the initial system either by running 1D case or with iteration 
methods in 2D case. This approach in 1D plane case was proposed in Ref. /11/ for the first-order 
scheme. In the presented technique this approach is applied to the second-order DDAD-scheme 
in 2D case. 

Consider the energy equation, which is being solved jointly with the radiation transport 
equation: 
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Substituting 1+ν
gU  in the energy equation linearized with respect to temperature, obtain: 
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When Newton iterations k converge, obtain temperature 11 ++ = kTT ν . Using the new 

temperature obtain 1+ν
gB  at the cell center and density 1+ν

gU  according to formula (1.16). Outer 

iterations ν  are done when 1+ν
gU  and 1+νT  converge. 

2. Numerical calculations of the test problems 
 
Test 1. Solution of the system of non-stationary radiation transport equations 
accounting for radiation spectrum and ignoring scattering due to non-homogeneous 
medium (the Fleck problem). 
 

Planck radiation flux corresponding to the material temperature of Т=1 hits the surface of a 
4cm-thick flat layer. The layer consists of three physical regions. Since the DDAD technique is 
good for axi-symmetrical geometry, the flat layer in each problem under consideration is 
replaced with a spherical one located at the distance of 100 cm from the axis of symmetry 
(Fig.1). 

    Fig.1 Problem geometry. 
This problem is interesting since the standard iteration method gives very slow 

convergence, therefore, acceleration is needed.  
Spectral boundary conditions at the upper boundary Г1 were as follows: 0=gJ  at 

0<⋅Ω n  (free surface). At the lower boundary Г0 they were: )1(
4
1

== TBJ gg π
 at 0<⋅Ω n . 

Boundary conditions at the axis of symmetry Z (boundaries Г2 and Г3) were implemented by 

exploiting symmetry 
2

),,,,0,(),,,0,( πψψπµψµ <−= ztJztJ gg .  

The absorption coefficient was calculated by formula 3

/ )1(
ε

χα
ε T

c
e−−
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and 3, and χ = 10000 in region 2.  The scattering coefficient was - .0=sα  
Initial temperature in regions 1, 2 and 3 was Т1,2,3 = 0.001, the equation of state was Е1,2,3 = 

0.81Т,  and material density was ρ1,2,3=1.  
For energy variable the calculations used the following mesh: εg =15.0, 12.0, 10.0, 8.0, 7.0, 

6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.6, 2.2, 1.8, 1.4, 1.0, 0.7, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.08, 0.06, 
0.04, 0.02, 0.0 (28 groups).  
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The mesh in the direction space Ω  corresponds to the ES12 quadrature.  
In terms of space intervals in radial direction, the mesh was non-uniform in each region 

and used the formula: 100+r1 , where r1= 0,   0.004,  0.04, r4 = 0.1, . . . , r22 = 1.9 (18 uniform 
intervals with ∆r = 0.1), r23 = 1.987,  1.999, 2,  2.001,  2.004,  2.013,  r29 = 2.04, . . . , r37 = 2.36 
(8 uniform intervals with ∆r = 0.04), r38 = 2.396,  2.4,  2.404,  2.44, r42 = 2.5, . . . , r57 = 4  (15 
uniform intervals with ∆r = 0.1) ( i = 57). Number of intervals in regions 1, 2, and 3 was 24, 14, 
and 18, respectively. In terms of angular spacing, the mesh was uniform with 40 intervals in each 
region. 

Time step was τ = 0.0002. At each time step the solution was iteratively calculated till 
accuracy of 0.1% (εсх=0.001) was reached for the calculated material temperature. Calculations 
were done according to the first- and second-order approximation.  First-order St-scheme was 
calculated with parameters 5.0,5.0 == θδ . The classic DD/St-scheme leads to divergence of 
iterations. 

Though the unity temperature follows from the boundary conditions, numerical 
calculations did not give it.  The reason is that the boundary conditions are specified for the 
intensity, and temperature at the boundary was calculated from the energy equation. Temperature 
at the boundary was less than a unity and approached it when radiation-emitting region heated 
up. 

The calculation results are given in the plots showing material temperature versus spatial 
variable. Figure 2 presents profiles of material temperature obtained with the first-order (St-
scheme) and second-order (DDAD-scheme) schemes on the coarse (56 intervals in radius) mesh 
at computational time сt=9 cm. The results are compared with the exact solution obtained on the 
fine mesh (4000 points in radial direction). 

0 1 2 3 4

0,0

0,2

0,4

0,6

0,8

1,0

 Precision
 DDAD(56 точек)
 St(56 точек)

T

R  
Fig. 2 Profile of the material temperature at сt =9 cm. 
 
Figure 2 shows that the first-order scheme, unlike the second-order one, smears the front of 

the heat wave traveling through the optically thick medium (the 2nd region). 
Figure 3 shows profiles of the material temperature obtained with the first-order (St-

scheme) and second-order (DDAD-scheme) schemes on a fine (168 intervals in radial direction) 
mesh and a coarse (56 intervals in radial direction) one at the computational time сt=400 cm. At 
сt=400 cm the solution becomes stationary and is compared to the exact solution obtained at 
4000 points on the radius. 
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Fig.3 Profile of the material temperature at сt=400. 
 
From Fig.3 it is obvious that DDAD-scheme of the second order gives a monotonic profile 

close to the exact solution.  If compared with the first-order St-scheme, DDAD-scheme with 
mesh refining gives a faster convergence to the exact solution.  
 
Test 2.  The exact solution of a system of non-stationary spectral radiation 
transport equations with no account for scattering in the homogeneous medium 
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To obtain a 2D axially symmetric configuration, the planar layer is replaced by a spherical 
one 100 cm distant from the symmetry axis (Fig.1). 
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Г1: 0=gJ  for 0<⋅Ω n  (free surface) 

Г0: 22

)0466.0(5

3

0 ,

]1)][(037.004.0[

2
)0)(,,100(

0

zrx

en

ntxJ
xt

g
g g

+=

−Ω−

=<Ω=
−

ε

ε
  

Г2, Г3 (the symmetry axis Z): 
2

),,,,0,(),,,0,( πψψπµψµ <−= ztJztJ gg   

Initial conditions 
 t0=4.66, 0),,,,( 0 =ψµzrtJ g  
Energy intervals: εg =15.0, 12.0, 10.0, 8.0, 7.0, 6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0, 2.6, 2.2, 1.8, 

1.4, 1.0, 0.7, 0.5, 0.4, 0.3, 0.2, 0.15, 0.1, 0.08, 0.06, 0.04, 0.02, 0.0 (28 groups)  
The mesh in the direction space Ω  corresponds to the ES12 quadrature.  
Radial spacing: 40 intervals of equal length (∆r = 0.1) 
Angular spacing: 40 intervals of equal length 

Constant time step ∆t = 2⋅10-4 
Temperature iteration convergence constant схε =0.0001 
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The numerical solution was compared with the analog of the exact solution /2,3/ obtained 
for the 1D plane case: 

⎪
⎩

⎪
⎨

⎧

≤

>
−Ω−=

⎪⎩

⎪
⎨
⎧

≤
+=>−=

.0466.0,0

,0466.0,
}1]/)){exp[(7.34(

200

,0466.0,0
,,0466.0),0466.0(5

3

22

xt

xt
TnJ

xt
zrxxtxtT

ν
ν

ν

       

The calculation was run until the heat wave reached the right boundary, i.e., to t = 4.85.   
Figure 4 shows temperatures obtained with the first-order St-scheme and the second-order 

DDAD-scheme for times t = 4.7, 4.75, 4.8, 4.85.  
  

100 101 102 103 104

0,0

0,2

0,4

0,6

0,8

1,0

t=4.85

t=4.8

t=4.75

t=4.7

 Precision
 St
 DDAD

T

R  
Fig. 4. Temperatures at times t = 4.7, 4.75, 4.8, 4.85 
 

It is obvious, that the obtained solutions are in a good agreement with the exact solution. 
 
Test 3:  The exact solution of a system of non-steady ‘gray’ radiation transport 
equations with no account for scattering in the two-material region 
 

“Gray” radiation of intensity ,
)(8790

)1000307(29
n

tJ
Ω+

+
=  or 4 3071000195.0 += tT , is incident 

on a flat layer that is 5 cm thick and consists of two materials of unit density.  

Equation of state: 
⎩
⎨
⎧

∈

∈
=

].106,103[,047.10
],103,101[,242.1

4

4

xT
xT

E   

Scattering factor: .0=sα   
The absorption factor is calculated as  

( )
( )⎪⎩

⎪
⎨
⎧

∈

∈
=

−

−

].106,103[,06.327

],310,101[,18.981
14

14

xT

xT
cα  

To obtain a 2D axially symmetric configuration, the planar layer is replaced by a spherical 
one 100 cm distant from the symmetry axis (Fig.1). 

Boundary conditions 

Г1: 22
1 ,

)(8790
)1000318(29)0)(,,106( zrx

n
tntxJ +=

Ω+
+

=<Ω=  
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Г0: 22
0 ,

)(8790
)1000307(29)0)(,,100( zrx

n
tntxJ +=

Ω+
+

=<Ω=  

Г2, Г3 (symmetry axis Z): 
2

),,,,0,(),,,0,( πψψπµψµ <−= ztJztJ .  

Initial conditions 
For t0=0, a continuous function Jg and a piecewise continuous function T are defined: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈
Ω+

+=∈
Ω+

+

=
],106,103[,

)(8790
87

,],103,101[,
)(8790
)206(29

),,,,(

22

0

x
n

x

zrxx
n

x

zrtJ ψµ  

and piecewise-continuous function Т: 

⎪⎩

⎪
⎨
⎧

∈

+=∈+
=

].106,103(,24.0

,),103,101[,206195.0
),,(

4

224

0
xx

zrxxx
zrtT  

The mesh in the direction space Ω  corresponds to the ES12 quadrature.  
Radial spacing: 40 intervals of equal length in region 1 (∆r=0.05) and 40 intervals of equal 

length in region 2 (∆r=0.075)) 
Angular spacing: 40 intervals of equal length 

Constant time step ∆t=2*10-4 
Temperature iteration convergence constant схε =0.0001 
The numerical solution was compared with the analog of the exact solution /4,5/ obtained 

for the 1D plane case: 

⎪
⎪
⎩

⎪⎪
⎨

⎧

∈
Ω+

+

+=∈
Ω+
++

=
],106,103[,

)(8790
)10003(29

,],103,101[,
)(8790

)2061000(29

),,,,(

22

x
n

tx

zrxx
n

tx

zrtJ ψµ  

⎪⎩

⎪
⎨
⎧

∈+

+=∈++
=

].106,103(,10003182.0

,),103,101[,2061000195.0
),,(

4

224

xtx

zrxxtx
zrtT  

Figure 5 shows temperatures obtained with the DDAD-scheme on fine (40+40) and 
coarse (5+5) meshes for t = 0.005, 0.01.  

101 102 103 104 105 106
0,76

0,77

0,78

0,79

0,80

0,81

0,82

0,83

t=0.005

t=0.01

 Precision
 DDAD(5+5)
 DDAD(40+40)

T

R  
Fig. 5. Temperatures at t = 0.005, 0.01 
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It is obvious from Fig.5 that the solution obtained on the fine mesh agrees rather well with the 
exact solution. 
 
Conclusion 
 
As shown by calculations, the DDAD scheme in combination with the DMT-method of iteration 
acceleration performs rather effectively in the simulation of thermal radiation transport with the 
multi-group kinetic model on arbitrary quadrilateral meshes.  
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