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The paper discusses the effort carried out at VNIIEF to consider the 
applicability of unstructured Lagrange meshes to multidimensional 
continuum mechanics problems with high shear strain and vortex flows. 
Three finite-difference numerical techniques for solving continuum 
mechanics problems on polyhedral unstructured Lagrange meshes are 
described. Examples of numerical calculations of benchmark problems 
are given. 
 

Introduction 
Finite-difference methods have gained broad application in numerical computations 

of time-dependent continuum mechanics problems. As early as in the mid-1950s, 
pioneering techniques were developed to provide numerical calculations of 2D gas 
dynamics problems. With the advancement of computer engineering, there also started to 
emerge numerical modeling techniques for 3D flows, being a generalization of 2D 
techniques to 3D cases. Numerical techniques for 2D continuum flow simulation mainly 
use structured tatragonal meshes, and for 3D flows, structured hexahedral meshes. At 
that, problems with small strain in materials are usually solved on Lagrange meshes, 
whereas those with high shear strain and stream flows are solved on Eulerian or 
Lagrange-Eulerian meshes. The wider use of structured meshes as applied to continuum 
mechanics problems is attributed to their rather high efficiency and simplicity of 
computational algorithms. 

The development of unstructured mesh techniques at VNIIEF was initiated in the 
mid-1960s by I.D.Sofronov, who pointed at the utility of such an approach (Sofronov, 
1966).  Meshes comprised of arbitrary polygons and polyhedrons remove a number of 
difficulties in generating the initial mesh, which are typical of structured meshes, 
significantly simplifying the generation of initial meshes with specified parameters in 
complex-geometry domains. Unstructured mesh techniques allow local mesh 
reconfiguration tools to be used both to change the number of points and to change the 
number of point sets. This extends computational capabilities as applied to high shear 
strains in Lagrange variables. Therefore, it is more reasonable to use unstructured mesh 
techniques for solving complex-geometry problems, which are poorly described by 
structured meshes, problems with high shear strain and stream flows. In addition, the 
accuracy of computations in Lagrange variables is generally higher than in computations 
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with the same number of points but in Eulerian variables. Techniques for solving 
continuum mechanics problems on unstructured meshes are developed at VNIIEF by 
different teams in two directions – using Lagrange and free Lagrange methods. 
Unstructured polygonal meshes underlie the DMK and MEDUZA techniques (Sofronov 
et al., 1984), which were originally intended for 2D gas dynamics problems and then 
incorporated heat conductivity (Panov, 2004), elastoplasticity (Sokolov, 2004) and 
magnetohydrodynamics. In 1987, I.D.Sofronov and V.V.Rasskazova suggested 
generalizing the 2D Lagrange technique DMK to a 3D case, which resulted in the TMK 
technique (Rasskazova, Sofronov, 1987, Rasskazova et al., 1998). The free Lagrange 
technique MEDUZA was generalized to 3D gas dynamics problems on unstructured 
meshes in MEDUZA-3D (Butnev et al., 2003). 

 
Problem Definition 

Let us consider two equations of motion of isotropic continuum: 
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where ρ  is the matter density, E  is the specific internal energy, T  - the temperature, κ - 
the heat conductivity factor,  - the velocity vector, ),,( wvuu = ( )zyxr ,,=  - the radius 
vector, P  - the pressure,  - the strain tensor deviator,  - the strain rate tensor, 

 - the first invariant of tensor , and
S D

(SDS p ) SD H  is the magnetic field strength vector .  

To close the system of differential equations, let us use the equation of state of the 
matter: .                          (2) ( ),ГP P Eρ=

If the matter is described by a gas dynamics model, 0=S . If the medium is 
described by an elastoplastic model, уп; SS = гPP= . In this case, in order to define the 
deviator component of the strain tensor, let us use the Hooke law in the differential form: 
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where G  is the shear modulus, and 
tδ
δ  is the time derivative along the moving direction. 

In the region of plastic strain, let us use the Mises flow rule to correct the strain tensor 

deviator: 2упуп

2
3 YSS ijij = ,              (4) 
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where Y  is the yield stress, which can be a constant (for an ideal plastic matter) or a 
function (for materials with hardening). 

If the material is described by an elastoviscoplastic model, then: 

вг PPP += ; ,  вуп SSS += в
1

1
3 PP S D
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where гP is derived from Eq. (2);  is derived from Eqs. (3), (4);  are the 
viscous pressure and the strain tensor deviator; and 

упS в в,P S

1 2,μ μ are the values of dynamic 
viscosity.  

Major Features of the TMK Technique 
The first 3D technique to solve 3D gas dynamics problems on unstructured 

polyhedral Lagrange meshes was TMK, a technique developed under the guidance of 
I.D.Sofronov and V.V.Rasskazova (Rasskazova and Sofronov, 1987, Rasskazova et al., 
1998). This technique was further extended to time-dependent elastoplastic flows 
(Sokolov, 2002). For solving gas dynamics and elastoplasticity difference equations, the 
technique uses an explicit difference scheme, which allows velocities to be specified at 
mesh nodes, and density, energy, pressure and strain, in mesh cells. In generating a finite-
difference scheme, one uses a spaced-apart centering template: kinematic values are set 
at difference mesh nodes, and thermodynamic, in cell centers. In order to define mesh 
node velocities, one uses the integral representation of the law of conservation of 
momentum integrated over the space embracing the node from the side of four adjacent 
cells. The mesh is defined by arbitrary convex polyhedrons (Fig.1a).  

The space is filled by figures without folds and gaps irregularly, but one condition 
should necessarily be met – there should be no more than four cells converging in any 
mesh node. This condition can always be met if Dirichlet cells or Voronoi figures are 
used as convex polyhedrons at the initial point of integration time. The mesh is defined 
by coordinates and mesh node connections using coordinates of cell centers at the stage 
of initial Dirichlet mesh generation. Each mesh node adjoins four nodes and four mesh 
cells. Each node’s connections are organized. With minimum mesh information, one can 
always obtain any data required (determine the quantity and the numbers of mesh nodes 
comprising the face partitioning these cells; determine the numbers of all adjacent cells). 
The Dirichlet mesh generation algorithm is of recurrent nature. In N steps, one obtains a 
finished Dirichlet mesh composed of N cells (Fig.1.b). At the initial point of time, the 
mesh consists of convex polyhedrons with plane faces. 

In order to maintain the mesh in good condition in running a problem, one uses the 
method of elastic impact developed by V.V.Rasskazova (Rasskazova et al., 1998), which 
keeps trihedral angles convex with respect to the figure center over integration time, and 
the local polyhedral cell reconstruction technique. TMK is intended for numerical 
solution of single-domain 3D gas dynamics and elastoplasticity problems on unstructured 
polyhedral meshes with a fixed neighborhood structure. 
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a)         b)  
Figure 1 - A 3D mesh cell a) and the Dirichlet mesh contained in a cube – b). 
 

Major Features of the MEDUZA-3D Technique 
The major features of the free-Lagrange technique MEDUZA-3D (Butnev et al., 

2003) are the use of an unstructured mesh, centering of all gas dynamics values on the 
node, variable difference template for the numerical integration of differential equations 
and the possibility to change the mesh topology in running a problem. Boundaries are 
described by mixed cells calculated by the lumping method. The technique for solving 
3D gas dynamics problems on unstructured meshes is a generalization of the MEDUZA-
2D technique (Sofronov et al., 1984) for 2D problems. 

System (1) for the gas dynamics case is sought within the problem domain with 
specified initial and boundary conditions. One considers a set of points (mesh nodes), to 
which all thermodynamic and kinematic functions are assigned. The initial point 
distribution is set based on the initial and boundary conditions of the problem and a priori 
considerations of the problem solution. For each point, one defines a set of its neighbors 
based on the Euclidean metric. The neighborhood is defined using a tetrahedration 
process. The point set with the defined neighborhood generates the mesh. The technique 
uses a single-domain problem solution model. This produces mixed cells at interfaces, 
whose solutions are sought based on the multi-component approach. Mesh cells are 
polyhedrons with mesh nodes inside; all kinematic and thermodynamic values are 
centered on nodes. 

The cell construction algorithm rests upon the attraction of tetrahedron gravity 
centers, tetrahedron face gravity centers and edge centers. Mesh topology is stored using 
an approach, in which a point refers to an arbitrary adjoining tetrahedron, and each 
tetrahedron refers to four tetrahedrons adjacent to it and four of its vertices. The use of 
tetrahedrons made it possible to solve the problem of partitioning the interface in a mixed 
cell, if the node itself and its neighbors lie on the Lagrange surface. In this case, by 
assigning a material property to each tetrahedron at the initial stage, we will keep the 
tetrahedrons “pure” unless a point is shifted (moved apart) or the mesh is restructured to 
produce mixed tetrahedrons. In a 3D case, the integration of the equation of motion 
comes down to the solution of the surface integral ( )P q ndS

Δ

+∫∫ , where , q are the 

material and viscous pressures, n

P

is the outer normal vector,  is the triangle area, dS Δ  
are all the triangles making the surface of the integration cell. As shown in Fig. 2a, each 
face of the integration cell is a triangle (for definiteness, let us consider the triangle OId, 
whose vertices are the centers of the tetrahedron O and one of the faces of the tetrahedron 
I and the middle of one of the edges of the tetrahedron d). Let us define the values of 
pressure at these points using linear combinations of values at tetrahedron vertices 
1,2,3,4. Following this, the value of total pressure is defined as an arithmetic mean of the 
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values of total pressures at the triangle vertices:

 1 2 313( ) 2( ) 13( ) 7( )( )
36OId

P q P q P q P qP Q + + + + + + +
+ = 4

 
         (6) 

If a corresponding face of the integration cell lies at a boundary with a specified 
boundary pressure, the value of pressure at the boundary is not calculated using the above 
procedure, but is taken directly from the boundary condition. The sum vector of the force 
acting upon the cell is calculated by summing up elementary forces acting upon the 
elementary triangles of each tetrahedron with a respective sign. 

a)                          b)      
Figure 2 – Six triangles of the integration surface related to node 3 – a); tetrahedration of 
a hexahedron – b) 

The initial unstructured mesh is derived from a structured hexahedral one by splitting 
each hexahedron into six tetrahedrons. Fig. 2b) shows an example of the tetrahedration of 
a hexahedron. In order to suppress high-frequency perturbations, one uses the velocity 
field smoothing operator . 3( )O hτ ⋅

 
Major Features of the TIM Technique 

The TIM technique (Sokolov et al., 2004) serves for 3D continuum mechanics 
computations on polyhedral unstructured Lagrange meshes. It allows computations to be 
performed on meshes with an arbitrary number of node connections (number of adjoining 
cells). The technique is also valid both on the Dirichlet-Voronoi unstructured polyhedral 
meshes, and on hexahedral meshes and unstructured polyhedral meshes having an 
arbitrary number of neighborhoods in a node. The technique uses the same computational 
algorithm for all the meshes. Initial data and continuum mechanics equations are 
calculated in Cartesian coordinates. The technique is intended for solving gas dynamics, 
time-dependent elastoplasticity, magnetohydrodynamics and heat conductivity problems. 

Let us seek solution to a problem stated in Cartesian coordinates ( )zyx ,,  in a given 
domain  bounded by the surface C  on the assumption that all necessary initial and 
boundary data are specified.  In generating a finite-difference scheme for solving system 
of differential equations (1), one uses the integro-interpolation process assuming that: 

V

1) the values  are assigned to the centers of polyhedrons (cells) 
and are constant within them; 

, , , , , , ,ij ijP E q S H Tρ ε

2) the values , ,x y z  are assigned to the vertices of polyhedrons (nodes); 
3)  the values  are assigned to the vertices of polyhedrons and are constant within 

the volumes related to the nodes; 
, ,u v w

4) faces are described by their piecewise linear representation. 
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To calculate the cell volume, let us consider a computational cell comprised of N 
vertices (nodes). At distortions, the cell’s faces, being polyhedrons in space, may be non-
planar. To this end, the cell is split up into a system of tetrahedrons, each having vertices 
in the center of the computational cell, in the center of the face and at two neighbor 
vertices of this face. The cell volume is defined as a total of the volumes of these 
tetrahedrons. The mass of nodes is defined as a total of mass shares (per vertex) of the 
cells converging in the node. In running a problem, node masses and cell masses are 
constant. 

In solving time-dependent gas dynamics and elastoplasticity problems (Sokolov, 
2002), one uses a fully conservative explicit difference scheme. As applied to structured 
meshes, it has the second order of accuracy in space and time. As artificial viscosity one 
uses a combination of the quadratic and linear viscosity. The velocities of mesh nodes are 
defined using the law of conservation of momentum in the integral form. The integration 
is performed over the volume V  embracing the node from the side of the cells adjoining 
the node bounded by the surface C using the Gauss-Ostrogradsky formula: 

  
( ) ( )( )xyxx xz

xx xy xz
V V C

SP q S SdudV dV P q i S i S j S k ndC
dt x x y y

ρ
∂∂ +⎛ ⎞∂ ∂

= − + + + = − + + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
∫∫∫ ∫∫∫ ∫∫       (7) 
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dv ;)(ρ  ( ( ) )xz yz zz

V C

dwdV S i S j S P q k ndC
dt

ρ = + + − −∫∫∫ ∫∫ ,  

where kji ,,  are the coordinate unit vectors, n  is the normal to the surfaceC .  
In solving magnetohydrodynamics problems with a frozen-in field, the magnetic field 

strength vector is defined in the centers of mesh cells, and the current density and 
electromagnetic force vectors are assigned to mesh nodes. We use a fully conservative 
explicit difference scheme. For solving the magnetic induction equation, we integrate it 
over the computational cell Ω . Let the cell volume be V . By integrating both members 
of the equation over , we obtain the equation: Ω

   
( )

x y z

d HV
H udydz H udzdx H udxdy

dt ∂Ω ∂Ω ∂Ω

≈ + +∫ ∫ ∫             (8)   

The integrals in the right-hand member of this equation are substituted by finite sums. 
 In solving a heat conductivity equation, the value of temperature is defined in cell 

centers, and the heat flow vector, at the nodes. The difference scheme is constructed 
using the process of generalized derivation of discontinuous functions and is implicit and 
conservative (Panov, 2004). The approximation of the differential operator in the heat 
conductivity equation on structured meshes has the second order of accuracy in space. 
The resulting difference system of linear equations has a symmetric and positively 
definite matrix. The system of equations is solved by the iteration method of conjugate 
gradients using different types of preconditioners, as the incomplete Cholesky 
decomposition, the Schwartz decomposition method, etc. 
Types of initial meshes used in the TIM technique 

The technique uses the following types of initial computational meshes: 
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• unstructured polyhedral mesh composed of Dirichlet cells or Voronoi figures (with 
the inside angle surrounding four cells) – Fig.3.a. 

• unstructured polyhedral mesh derived from a 2D unstructured mesh – Fig. 3 b-c. It 
can be generated by rotating a 2D mesh around the axis or by shifting a sheet with a 
2D mesh in space. Internal nodes of the mesh are convergence points of six cells. 

• Hexahedral mesh (described by an irregular structure with an arbitrary neighbor 
connectivity) – Fig. 3d. Internal nodes of the mesh are convergence points of eight 
cells.  
An initial mesh for solving complex-geometry problems may comprise several types 

of meshes (for example, hexahedral and polyhedral) in a single domain at once – Fig.4. 

 
 a)    b)   c)   d) 

Figure 3 –  The Dirichlet-Voronoi mesh - a); unstructured meshes derived from a 2D 
mesh - b) and c); a hexahedral mesh - d) 

 
Figure 4 – Example of a mesh having hexahedral and Dirichlet-Voronoi cells in one 
domain 
Mesh maintenance in the TIM technique 

Mesh maintenance is known to be one of the problems encountered in numerical 
calculations using high-strain Lagrange techniques. TIM provides special mesh 
maintenance methods, which can be used concurrently with numerical calculations in any 
combination. 

Method 1. In most techniques, mesh adjustment is subject to a restriction that 
computational cells should be convex. The cell convexity condition is a considerable 
constraint for meshes, especially for 3D hexahedrons. This condition is excessive if the 
mesh should be maintained such as to have no overlaps. Tolerating non-convex cells may 
considerably enhance capabilities for initial mesh calculation algorithms. It should be 
noted here that an acceptable mesh is understood to be a mesh having no self-intersecting 
cells. Cell faces are space polygons, which are non-planar figures. Mesh maintenance is 
performed by imposition of differentiable connections, which implements a number of 
mesh maintenance algorithms (see Fig. 5): 
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• meshes containing “stellar” cells (all cell nodes are located in the line of sight from 
the cell center); 

• meshes with convex dihedral cell angles (the dihedral angle is made by two faces of 
the cell with a common edge); 

• meshes with convex polyhedral cell angles (the polyhedral angle is made by cell 
edges meeting in one node). 

a)    b)  

Figure 5 – Convex cell – a); non-convex “stellar” cell - b) 

Method 2. In calculating problems with high shear strain, vortex and stream 
flows, cells may stretch in any direction, which distorts the approximation of solution, or 
get strongly compressed, which reduces the mesh dimension. In order to more 
successfully use the technique in numerical experiments, it is equipped with local 
adjustment tools for polyhedral meshes. At that, after performing the local mesh 
adjustment, an arbitrary number of cells may meet in a node. Local adjustments of 3D 
meshes rest upon two operations – partitioning and integration of cells. 

Method 3 is based upon the process of velocity field smoothing in mesh nodes to 
suppress high-frequency perturbations. It provides smoother solutions and enhances the 
mesh quality by reducing the work load on the algorithms implementing the two above 
methods. 
Calculations of multi-domain problems using the TIM technique 

In calculating complex 3D problems, the system’s initial geometry often needs to be 
divided into domains. Such a division is often necessary for a more accurate description 
of interacting solids with assigned slide planes (boundary). In running a problem, the 
faces of polyhedral cells (including boundary cells) are non-planar figures. Therefore, in 
order to solve the problem of contact interaction at the interface of two media, one first 
triangulates the two interacting surfaces (an additional triangular mesh is introduced). 
The triangulation of the interface using the additional mesh is performed from the centers 
of boundary cells towards its nodes. In order to calculate the contact interaction, all 
necessary kinematic values are converted to the additional mesh. 
 
Examples of Calculations 
Decay of an arbitrary discontinuity in gas dynamics settings 

Let us consider numerical calculations of the problem of arbitrary discontinuity 
decay. Let an ideal gas, whose conditions are defined as follows: left –

;  2.5;  0I I IP uρ =1 = = , right ;  0.5;  2.8026II II IIP uρ =1 = = − , at the initial point of time 

 be situated to the left and to the right of the plane 0t = 0.5x = . The adiabatic index 
is .γ =1 4 . All surfaces of the domain are “rigid walls”. The comparison of the numerical 
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solution to the problem obtained by means of TIM using different number of points along 
the direction of shock propagation with an analytical solution for the point of time 

 is shown in Fig. 6. 0.24t =

 а)  б)  

Figure 6 – Pressure distribution - a) and density - b) at 0.24t =  

The plane stress wave problem 
         Let us consider a plane elastoplastic problem of half-space deformation having an 
accurate solution. The initial geometry is a rectangular bar with the following 
dimensions: 1,5AB cm

Sokolov S.S. 9

= , A 0,5A AD cm′ = =

0 1
. The number of specified points in the 

problem is 1,200. Initial conditions: ρ =  g/cm3, 0u= , 000 ===
ii xxSPE . The material is 

described by the equation of state EP ργ )1( −=  with an adiabatic index 3γ =  and by an 
ideal elastoplastic model. Elastoplastic properties of the material: 15G =  GPa, 

 GPa. Time-independent pressure 0 1Y = гр 5P =  GPa is specified on the left boundary; all 
other boundaries are rigid walls. The calculations were performed using the TIM code. 
Figs.7.a – 7.c show the results of numerical calculations and analytical solution for 

  μs. The calculations resulted in the break-up of the shock wave into two parts: an 
elastic front wave traveling at a velocity 

2.4t =
elastic 4,52D =  km/s is followed by a plastic wave 

km/s. The results of the calculations are in good agreement with the 
analytical solution ( km/s, 

plastic 3, 26D =

elastic 4,5D = plastic 3, 25D = km/s). 
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a)    b)   c) 

Figure 7 – The plane stress wave problem: a) pressure and stress profiles; b) velocity 
profiles; c) density distribution profiles 
The Richtmyer-Meshkov instability growth problem 

The domain with dimensions 0≤X≤12cm, 0≤Y≤12cm, 0≤Z≤24 cm is occupied by 
Freon and air. Freon-occupied domain size is 0≤X≤6cm, 0≤Y≤6cm, 0≤Z≤9 cm. Constant 
velocity = (0,0,-21.056456 cm/ms) is assigned to the upper boundary. Air pressure is U
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P1=1 atm, and density is =0.001205 g/cm1ρ
3. In Freon, P2 =1 atm, density 2ρ  = 0.00513 

g/cm3. The equation of state of the matter is given by an ideal gas with =1.4 for the 
air, and =1.139 for Freon. The calculations were carried out using the MEDUZA-3D 
code. Fig. 8 illustrates the results of the calculations for t=0.764 ms and shows the shape 
of Freon and the pressure field. 

1γ

2γ

Figure 8 – The shape of Freon and the pressure field for the point of time t=0.764 ms 
The problem of bar impact against a wall 

As applied to high-strain problems, the TMK and TIM techniques were validated 
using the problem of a bar penetrating into a wall in the gas dynamics and elastoplastic 
approximations. 

Gas dynamics simulation. The projectile and wall materials were described by the 
equation of state of an ideal gas with 1.4γ = . In this problem, the projectile has a 
configuration of a 2 x 2 x 10-cm parallelepiped, which flies at a velocity of 10 km/s and 
collides with a solid in the form of a cube having a 10-cm edge. Initial density is 0 1ρ =  
g/cm3 , pressure and energy are taken as zero. The projectile’s edges are defined as “free 
boundaries”; and all wall edges, except the colliding one, are defined as “rigid walls”. 
The calculations were carried out using the TMK and TIM codes on the Dirichlet-
Voronoi Lagrange mesh having 31,400 computational cells. 

a)  b)  c)  

Figure 9 – Projectile penetration into a wall, gas dynamics:  
a) initial geometry; b) t =3.5 μsec; c) t =7 μsec 
Fig. 9 shows the initial geometry of the problem and dynamics of projectile embedding 
into a wall with the computational mesh and section by the  plane; color fill 
visualizes the matter density. 

Oxz
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Elastoplastic simulation. The materials of the projectile and the impacted solid were 
defined as steel.  Steel was described by the Mie-Gruneisen equation of state and the 
model of ideal elastoplasticity having the following parameters: 0 7.8ρ =  g/cm3; 

 km/s; ; Г ; 0 4.9c = 5n = =1.66 2.5sσ =−  GPa; 81G=  GPa; Y 1.05=  GPa. The initial 3D 
mesh, dimensions and configuration of the projectile and the wall are the same as in the 
above simulation. The projectile travels at a velocity of 1 km/s. Initial density is 

0 7.8ρ =  g/cm3, pressure and energy are equal to zero. The projectile’s edges are defined 
as “free boundaries”; and all wall edges, except the colliding one, are defined as “rigid 
walls”. The calculations were carried out for the point of time 40 μsec using the TMK 
and TIM codes. Fig. 10 shows the dynamics of projectile embedding into a wall with the 
computational mesh and section by the Oxz  plane; color fill visualizes the matter density. 

 

a)  b)  c)  
Figure 10 – Dynamics of projectile penetration into a wall, elastoplasticity: a) 
  μsec; b)  μsec; c) 10t = 30t = 40t =  μsec 

The ellipsoid compression problem 
The “crash-free” property of the techniques as applied to high-strain problems was 

tested by solving the ellipsoid compression problem using the velocity field smoothing 
algorithm. At the initial point of time 0t =  , the computational domain is an ellipsoid 
with semi-axes . The ellipsoid contains a uniform resting ideal gas 
described by the equation of state 

1.5;  1.5;  1a b c= = =
E( 1)P γ ρ= − , density 200=ρ , 1.3333γ = . At the 

initial point of time, the ellipsoid gets compressed by constant pressure, varying with 
time according to the law: . The calculations were 
carried out using the TIM code on a hexahedral (8,000 points) and polyhedral (22,575 
points) mesh. Fig. 11 shows the configurations of the computational domains for 

( )    for 0<t<5,   ( ) 5   for t 5P t t P t= = ≥

9.0t = , 
 and  with pressure distribution in the OXY section for the hexahedral 

(Fig. 11a) and polyhedral (11b) mesh. At 
15.0t = 20.0t =

9.0t = , the ellipsoid has a shape of a disk; at 
 , its shape is close to the domain. By 15.0t = 20.0t = , the ellipsoid stretches and 

flattens. The behavior of the ellipsoid in these calculations is qualitatively the same. Note 
that the problem was calculated crash-free up to the point of time  50.0t = . 
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a)                                                                               b)              
Figure 11 – Ellipsoid compression dynamics with mesh mapping in the OXY section 
 
The cooling cube problem 

Cooling cube simulation was performed to validate the TIM technique as applied to 
the diffusion equation. The problem’s diffusion equation is:  

2 2 2

2 2

T T T
t x y z 2

T∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
. 

The computational domain is a [ ] [ ] [ ]0,1 0,1 0,1× ×  cube. The initial temperature specified 
within the cube is T , and the temperature at its boundary is T1= 0= . The analytical 
solution to the problem takes the following form: 

 T x , ( ) ( ) ( ) ( ), , , , , ,y z t f x t f y t f z t= ( )
( )( )

( ) ( )( )
22

0

exp 2 1
, 4 sin 2 1

2 1k

k t
f x t k x

k

π
π

π

∞

=

− +
= +

+∑

=

    
(9)

 
 

The problem was calculated on a hexahedral mesh with a time step of 0.0005. The 
mesh had 20 cells in each direction. Fig. 12 shows the comparison of analytical solution 
over calculations for t . In order to compare the analytical and the numerical 
solution, points with coordinates 

0.05
( ),i i

a cT T  were plotted for all -th cells, where ,   
are the analytical and numerical values of temperature in the i -th cell. The comparison of 
the numerical and the analytical solution proves that calculations are reasonably accurate. 

i i
aT i

cT

 
Figure 12 – Analytical vs. numerical solution for t 0.05=  
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Problem of a spherical piston in a dipole magnetic field 

The problem’s geometry is a spherical enclosure with an inside sphere of initial 
radius 0R  expanding at a constant rate . The domain is defined as a dipole magnetic 
field with axis orientation along the 

Ru
x -axis and radius 0R : 

3 3 2
0 0

0
1 31 ,
2 2x

R R xH H
R R R

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠          

3
0

0 2

3 ,
2r

R rxH H
R R

⎛ ⎞ ⎛ ⎞= − ⋅ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

        (10) 

where r y , 2 2 2z= + 2 2 2 2R x y z= + + . If  (strong magnetic field), the approximate 
analytical solution to the problem would be a dipole magnetic field with radius 

0 RH u

( )0 0 RR t R u= + t . The calculations were performed on a mesh generated by rotating a 2D 
mesh around the OX axis. The 2D mesh had 40 cells in the radial direction, and 80 cells 
in the angular direction. The 3D mesh consisted of three “layers”. The radius of the inner 
sphere 0R  is 0.5; the radius of the outer sphere is 3. Piston velocity is , magnetic 
field strength is . The matter is assumed to be an ideal gas with adiabatic index 

0.1Ru =

0 5H =
2γ =  and initial density 0 1ρ = . The calculations were carried out using the TIM code. To 

compare the analytical and numerical solution, analytical and numerical values of the 
magnetic field strength vector component ( an

iH and , respectively) were considered 

for each i -th cell. Fig. 13 shows points with coordinates

num
iH

( ),an num
i iH H   for all i -th cells 

and their position with respect to the line y x= . The comparison of the analytical solution 
with the calculations shows that the latter are reasonably accurate. 

a)  b)  

Figure 13 – Values of xH  - a) and  - b) at the point of  time rH 0.31t =   

Conclusion 
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This paper provides an overview of three techniques developed at VNIIEF to 
solve 3D continuum mechanics problems on unstructured polyhedral meshes. Their 
development was facilitated by the wide practical experience gained at VNIIEF in using 
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the Lagrange technique DMK and the free Lagrange technique MEDUZA for solving 2D 
continuum mechanics problems on unstructured polygonal meshes. The practical interest 
to the application of unstructured meshes is particularly clear, when these are used for 
solving complex-geometry problems with local small-scale sub-domains, in which the 
use of polygonal and polyhedral cells allows generating meshes with specified properties 
in a more efficient way. The results of the benchmark problem calculations on polyhedral 
unstructured Lagrange meshes demonstrated their validity. 
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