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The Introduction presents a brief review of the approaches to the 
development of mathematical simulation methods for 2D and 3D 
gas dynamic flows, used by VNIIEF. In the main part of the Report 
the development principles of the regular Lagrangian-Eulerian 
technique (LEGAK), based on the application of the concentration 
method for computation of gas dynamic flows with big contact 
boundaries deformations, are presented in detail. The examples of 
several problem computations are presented.  

 
Introduction 

The application area of developed in VNIIEF gas dynamic techniques is computation 
of multi-dimensional non-stationary flows of inhomogeneous continuum with 
consideration of different physical phenomena, such as: gas dynamics, elastoplasticity 
viscosity, detonation of explosives, radiant heat conductivity, etc.   

The special features of simulated problems are the existence of several physical 
substances in studied systems and big deformations of contact boundaries.    

As we know, numerical simulation of such flows, especially in the 3D case, is 
followed by many troubles. These troubles come from two contradictory requirements to 
numerical techniques: the possibility of computation of flows with big deformations of 
contact boundaries in the “crash-proof/hand-off” mode (which is especially important at 
parallel computations on cluster systems) and the necessity of high computation precision 
(required by certain applications). Various approaches to these troubles, based on the 
compromise between the precision and “crash-proofness”, led to the development of a 
row of finite-difference methods and techniques, which differ from each other in the 
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types of used computation grids (regular, non-regular, Lagrangian, Lagrangian-Eulerian 
and Eulerian ones) and the methods of detachment of contact boundaries.  

The DMK (Sofronov et al., 1984) and MEDUZA  (Glagoleva et al., 1972) techniques 
are based on the application of Lagrangian grids. In MEDUZA there is the possibility of 
grid topology variation in the course of problem solution (including variation in the 
vicinity of contact boundaries) and appropriate recalculation of values in accordance with 
convection flows.   

In the regular Lagrangian technique D (Dmitriev et al., 1979, Artem’ev et al, 1989) 
local correction of fragments of the Lagrangian grid at big deformations by means of  
automatic improvement of “bad” points of the 3D Lagrangian grid and recalculation of 
grid values for the improved grid is used.  At point improvement the technique of 
“mixed” cell computation is used on the interface of different substances, which is based 
on the introduction of adaptive grids in the cells with several substances.  

In some VNIIEF techniques, which use regular computation grids, a part of (or all) 
the contact surfaces with complicated topologies or seriously deformed during 
computation, are computed on a grid, which lines do not coincide with them. It is carried 
out by means of the concentration method developed in VNIIEV (Bakhrakh et al., 1981) 
for computation of so called “mixed” cells occurring in this case. Such approach is used 
in the EGAK (Bakhrakh et al., 1981) and TREK  (Yanilkin at al., 1997) Eulerian 
techniques, the LEGAK Eulerian-Lagrangian technique (Bakhrakh et al., 1984, Bakhrakh 
et al., 1999, Bakhrakh et al., 2003) and LEGAK-3D (Bakhrakh et al., 2004), MIMOZA 
(Sofronov et al., 1989, Zmushko et al., 1988), RAMZES-KP (Voronin et al., 1988, 
Sofronov et al., 1999). Realizations of the concentration method in the techniques 
specified above differ from each other in the models and computation algorithms for 
“mixed” cells on the Lagrangian and Eulerian (calculation of convection flow values) 
stages. Thus, for example, in the RAMZES-KP technique the algorithm of contact 
boundary localization inside the computational cell, proposed by Youngs (1982), is used. 
The algorithms, resident in the concentration method, are also used in the MEDUZA non-
regular technique. Apart from this, the specified methods are characterized by the 
topology of used regular grids and finite-difference schemes.  

To improve the quality of difference approximation of homogeneous substance 
convective flows on the Eulerian computation stage in the techniques, which use the 
regular computational grid, the PPM method (Wodward and Colella, 1984) and its 
modifications have been widely used. Such approach combined with the concentration 
method in “mixed” cells, is used in the EGAK, TREK, LEGAK, RAMZES-KP 
techniques. In MIMOZA the modified method of finite linear reconstruction is used.  

Speaking about “subgrid” approaches to the description of contact boundaries, 
developed in VNIIEF, we should mention the method of adaptive refined grids, used, for 
example, in the EGAK++ technique (Yanilkin et al., 2000), and the method of explicit 
detachment of contact boundaries, which do not coincide with the grid lines, that is the 
method of contact line detachment (CLD, Stenin et al., 1998), developed in the frames of 
the LEGAK technique. In the method of adaptively refined grids a more refined (than the 
basic one) computational grid is introduced in the vicinity of contact boundaries.  The 
method of contact line detachment (CLD) as the lines, which motion is calculated in a 
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certain way, traces back to Nokh’s work (1964). The points, describing contact 
boundaries, are located independently of the nodes of the computational grid.  

Another VNIIEF approach to the development of numerical algorithms is the 
realization of the discrete method of smoothed particles (the SPH technique by Bashurov 
and Potyanhina, 1998).  

The main part of the Report contains a more detailed description of the Regular 
Lagrangian-Eulerian technique LEGAK-2D (Bakhrakh, 2004), based on the application 
of the concentration method for the computations of gas dynamic flows with big 
deformations of contact boundaries. Some examples of problem computations are 
presented.  

 

LEGAK-3D Method for Computation of 3D Non-Stationary Flows of 
Multi-Component Continuum and Principles of Its Realization on 
Multiprocessor Computers with Distributed Memory  
 
Principles of the LEGAK technique  

The LEGAK technique (Bakhrakh, 1984) is the fininte-difference Lagrangiean-
Eulerian technique, which uses a regular grid.  In the 3D geometry it is the grid, made of 
prominent hexahedrons.  

In the LEGAK technique the following is applied: 

- The Lagrangian-Eulerian computational grid, which is partially carried along 
by the substance; at that it is admitted that the surfaces of the computational 
grid may both coincide and not coincide with the boundaries of the 
substances; in the latter case cells with several substances appear and 
concentrations are introduced for consideration (Bakhrakh, 1999);  

- Continuous concordant representation (Bakhrakh, 1988) of the flows of mass, 
energy, momentum and other values at the approximation of convective terms 
of the initial system of equations;  

- Donor-acceptor algorithm (Bakhrakh, 1981, Bakhrakh, 1999) of convective 
flow computation to avoid computation diffusion; basing on the fields of 
substance concentrations in the vicinity of a donor cell the algorithm 
determines which substances and in what ratio flow out from the cell 
containing several substances.  

When the difference scheme is being built, the system of conservation laws, written 
for an arbitrary element of the space Ω, limited by the surface S, is used:  

( )
S

dF G u u d s H dv
dt

×

Ω

+ − = − ,∫ ∫       (1) 

where vectors  F, G, H have the following components:  
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M=ρν  is the mass, comprised by an element of the space , Ω;, 
P is the pressure determined by the equation of state of the medium, p(ρ, e); 
€D  is the deviator of the deformation velocity tensor; 
€k  is the strain deviator, determined by Hooke's law and Mises’ yield condition;  
u ×  is determined by the law of motion of the surface S. 
Other denotations are conventional. 

Solution of the system of equations 1 is carried out by integration over time with the 
application of the splitting method (by Koven’a and Yanenko, 1981).  

For this purpose the initial system of equations 1 is split into two subsidiary ones.  

The first system – the Lagrangian stage – is obtained out of the supposition, that the 
surface S moves with the same velocity as the substance, that is at the first stage the 
following system of equations is solved:  

(1)dF H dV
dt ω

= −∫ .        (2) 

At the second (Eulerian) stage it is supposed, that the substance is at rest, while the 
surface S is moving. Thus, the system of equations to be solved at the second stage, has 
the following view:  

(1) (1) *( )
S

dF G u u d S
dt

+ −∫ 0.=        (3) 

In its turn when the system of equations 2 is solved, the method of splitting over 
physical processes is used.  

Difference formulae for the system of equations 2 and equation 3 are the 
generalization for the 3D case of corresponding correlations, accepted at the computation 
of axially symmetrical flows (Bakhrakh et al., 1984). At that the experience of building 
difference formulae for the computation of 3D non-stationary flows, accumulated during 
the development of other techniques in VNIIEF (Artem’ev et al, 1989, Yanilkin et al., 
1997, Zmushko et al, 1988, Sofronov et al., 1999) was used. 

As it has been indicated above, in the LEGAK technique the edges of computational 
cells (hexahedrons) may not coincide with the contact boundaries of substances.  

In this case the cells containing several substances (mixed cells) occur. Additionally 
to quantities   ρ, е, g, P the following ones are introduced:  , ,r u

/i ia M M= is mass and  /i iV Vβ =  is volume concentrations of components; ei is the 
specific (for the unit mass of the given substance) intrinsic energy, where , iM , are the 
mass and the volume of the substance number i, contained inside the computational cell 

iV

ω . Each substance has its own equation of state Pi = Pi (ρi, ei). 
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It is supposed, that for each substance, contained inside a mixed cell, the variation of 
values is described by equations, analogous to those of the system 2 at the Lagrangian 
stage and the system 3 at the Eulerian stage.  

To determine the variation of densities of the components at the Lagrangian stage, it 
is supposed, that:  

.idivu divu=              (4) 
In the 1D case this supposition is equivalent to the supposition, that the velocity of the 

contact boundary inside one computational cell is determined with the linear interpolation 
over velocities in the grid nodes.  

Thus, the rule of pressure P computation in a mixed cell follows from the condition of 
the additivity of unit energies and the accepted method of approximation of the equations 
of energies of components:  

/i i iρ α ρ β=              (5) 
1

( , ),
N

i i i i
i

P Pβ ρ
=

=∑ e

where N is the number of substances in a mixed cell, iρ  is the density of  the substance 
number  i. 

At the Eulerian stage the introduction of a special donor-acceptor computation 
algorithm for the flows from the cells with several substances (Bakhrakh et al., 1981) 
constrains  the computation diffusion and allows localizing contact boundaries, not 
detached explicitly, with the precision of up to one computational cell. The idea of the 
algorithm, limiting the computation diffusion, can be explained by the following simple 
example: first, a substance, contained by a clean cell, is flowing away from a mixed cell 
into that clean one. In the general case the field of concentrations around the donor cell, 
containing several substances, is analyzed, and basing on this analysis we determine, 
which substance, in what proportion and with what velocities flows out of the given cell.  

The difference scheme (the two-layer explicit one) has the first order of strength and 
is conditionally stable with the limitation of the step of integration over time:  

( )u c kh,τ + <  where h is the distinctive linear dimension of a computational cell, c is the 
sonic speed, u   is the velocity of grid motion in respect of the substance, k = 0.5. 

Program realization of the LEGAK-3D technique  
The basic principles of program realization of the LEGAK-3D technique coincide 

with the principles of realization of LEGAK (Avdeev et al., 2001), made for the 
computation of axially symmetrical flows.  

In the LEGAK-3D technique the sheet-by-sheet data organization is made. One of the 
families of computational grid surfaces represents either planes intersecting over one line 
(system axis), or parallel planes.This family is the Eulerian one, the planes of the sheets 
are fixed. In the sheets the grids are built following the rules, accepted in the LEGAK 
technique (Avdeev et al., 2001). 

The flat structure of the sheets can be affected by the module of Lagrangian gas 
dynamics computation. The flat structure of the sheets is restored by grid correction and 
value recalculation modules. Owing to this these modules operate in two phases.  
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At the first phase points are projected on the sheets and due to this changes of the grid 
values are recalculated (convection flows through “intersheet” edges of the hexahedrons.  

At the second phase the computational grid on the sheets is corrected and the 
corresponding recalculation of the values is made (convection flows though “intrasheet” 
edges of hexahedrons).  

The types of computational grids in the sheets are the same as in the LEGAK 
technique. 

The LEGAK-3D technique allows to compute non-stationary flows of continuum in 
Lagrangian-Eulerian variables, which includes:  

- Computation of non-stationary gas dynamic flows;  

- Computation of elastoplastic flows;  

- Computation of detonation wave distribution with constant velocity and taking 
into account the kinetics of the explosive break-up;  

- Consideration of material destruction.  

Codes for the computations of the above specified processes are realized as separate 
computation modules.  

The software realization of the LEGAK-3D technique, as well as the LEGAK 
program realization, consists of the computational and service parts.  

The computational part is written in Fortran-90. It can operate on both PC and other 
computation complexes, which support Fortran-90 and the data transfer standard MPI 
(MPI, 1994).  

The service part, made to prepare problems and process the results, is realized as a 
Windows-application, written in C++; it functions on PC.  

 

Parallelization of the LEGAK-3D technique  

When the principles and schemes of the LEGAK-3D technique parallelization were 
being developed the experience of the LEGAK (Avdeev et al, 2001) parallelization was 
used. At that the main principles of parallelization remained unchanged: 

- No software limitations of the number of used computers (the limitation may 
arise out of the size of solved problem only);  

- Possibility to change the numbers of processors in the course of problem 
solving;  

- Physical computation results do not depend on the numbers of used processors 
(including one computer when the computations are held in the scalar mode);  

- The main load, connected with the computations in the multiprocessor mode, 
is put on the complex of support subprograms; 

- Portability of program complex to different computation systems with 
distributed memory, which support the MPI data transfer standard; 
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- Parallelization of computation programs is provided by means of minimum 
alterations of their texts; operation in the multiprocessor mode is organized 
analogously to one-processor mode.  

The scheme applied for LEGAK-3D parallelization is partially similar to that applied 
for 2D technique parallelization; still it has several noticeable differences.  

For LEGAK-3D parallelization the matrix geometrical problem decomposition over 
processors is used (with overlaps). At that the computation portion for one processor is 
several adjacent cells (in rows and columns) of the computational grid with complete data 
over all sheets. Fig.1 represents problem fragmentation into 9 fragments (3×3 per sheet).  

 

Problem-wise 
fragmentation 

Problem-wise 
fragmentation  

Data-wise 
fragmentation  

Data-wise 
fragmentation 

Fig.1. Example of problem fragmentation into 9 fragments (3×3 per sheet).  
Thin lines indicate rows and columns of data overlaps. Decomposition for fragment 4 

is indicated with brackets. . 

Each processor computes its problem fragment, at that one processor is in charge of 
the computation control and synchronization.  

Groups of values, which depend on the number of rows and/or columns in the 
problem are subject to decomposition and in the operative memory of each processor 
only important for this process cross-sections of these groups are stored.  

In the LEGAK-3D technique for the majority of physical processes, which are taken 
into account explicit finite-difference schemes are mainly used. At that to find new values 
of quantities in a cell the values of several cells in three dimensions are needed. To 
compute the values in fragment boundary points the values of the adjacent cells are 
needed. The overlap (by data) in rows and columns in the LEGAK-3D technique equals 
2. To provide adequate data decomposition over overlaps in the neighboring fragments 
after the computation programs are over the interprocessor data exchange in the 
overlapping cells is executed.  
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To realize these principles data structures and a package of service subprograms have 
been created.  

 

Examples of computations with the LEGAK-2D technique  
Several test and methodical computations were carried out to prove the LEGAK-3D 

ability to compute non-stationary continuum flows. Below the examples of some 
computations are presented.  

Problem 1. Adiabatic expansion of a gas ellipsoid. The analytical solution of this 
problem was obtained in the work (Nemchinov, 1965). 

The initial problem geometry is 1/8 of a three-axis ellipsoid  
(x ≥ 0, y ≥ 0, z ≥ 0) with half-axes: 3=xa , 2=ya , 1=za (Fig. 2). 
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Fig. 2. Three-axis ellipsoid. The domain is filled with an ideal gas ( )57=γ . 

The initial density and pressure distribution is determined with the following 
correlations:  
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The boundaries, coinciding with coordinate planes, are “rigid” walls. The pressure on 
the outer boundary is given as zero.  

In Table 1 the computation results for different numbers of points are presented.  
 
Table 1. Problem 1 computation results.  

Grid Ux Uy Uz 
x

y

a
a

S =1
y

z

a
aS =2

x

z

a
aS =3  

16×10×16 2.33 2.89 3.8 1.225 1.32 1.616 
16×20×16 2.43 3.02 3.92 1.233 1.3 1.605 
16×30×16 2.46 3.07 3.97 1.236 1.3 1.607 
Asymp. 
solution 2.56 3.17 4.27 1.23 1.35 1.66 
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Here 16×10×16 means problem fragmentation into 16 columns, 10 rows and 16 
sheets, etc.  

Basing on the computation results we can see the satisfactory agreement between the 
obtained values and the asymptotic solution. At that, the more the fragmentation is in the 
direction of the expansion, the closer the numerical solution to the asymptotic value.  

Problem 2. Development of Richtmyer-Mechkov’s 3D instability. The problem set-up 
is taken from (Zmushko et al., 1988). The initial domain is a parallelepiped 0.4 cm high 
with the sides 1.5 cm long filled with gas with the equation of state 

( )2
0sonicp c ρ ρ= − . On the upper edge the given pressure P=1 is constant, the 

lower edge is a free surface, lateral edges are “rigid” walls.  

At the initial moment for the whole domain a perturbation is determined as  

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−=

21
00 coscos

l
z

l
xAyy ππ .  

The initial parameters are as follows: с 1 /sonic km s= , 1 2 1.5l l cm= = , , 3
0 20 /g cmρ =

0 0.004A c= m .  

The computation was carried out up to the moment of time t=12 mcs. The 
computational domain was decomposed into 21 points along OX and OZ and 6 points 
along OY. As the problem does not have the analytical solution, the computation was 
carried out under other techniques (Yanilkin at al., 1997, Bakhrakh et al., 1984, Bakhrakh 
et al., 1999, Bakhrakh et al., 1999, Bakhrakh et al., 2003, Bakhrakh et al., 2004). 
Computation results were compared among each other over the increase of the 
perturbation amplitude in the sections Z=0 and Z=1.5. These curves are presented in 
Fig.3. A good agreement between these data and the data, obtained with other techniques, 
is well seen.  
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b 
Fig. 3. Problem 2. Computed dependences of perturbation amplitude on time: a –z=0; 
b – z=1.5. 

In Fig.4 the computational domain is presented for the moments of time 10 mcs and 
12 mcs.  
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b 
Fig. 4. Problem 2. Computational domain: a – t=10 mcs; b – t=12 mcs. 

Problem 3. Computation of Richtmyer-Mechkov’s instability. In the 3D set-up this 
problem was first computed under the 
MEDUZA technique (Barabanov et al., 
2003).  

In the domain  cm, 
cm, cm two ideal 

gases are disposed: air with parameters 

0 1X≤ ≤ 2
240 6Y≤ ≤ 0 Z≤ ≤

30.001205 /g сmρ = , 
0.2033195 /e kJ g= 1.4, γ =

= 1.139

 and freon  
with parameters , 

, 

30.00513 /g cmρ =
0.1374339 /e kJ g γ =

9

. Freon 
occupies the domain with the dimensions 

cm, 0 6cm, cm. 
The initial problem geometry is presented 
in Fig.5. All the computational domain 
boundaries, except the upper one, are rigid 
walls.  On the upper domain boundary  
(z=24 cm) the given pressure was  

 GPa. The initial grid was 
fragmented into 101 rows, 101 columns 
and 101 sheets in the directions Z, X, Y 
respectively. The sheets of the computational grid were parallel to plane XOZ. The grid 
in the sheets was as follows: in the interval  

0 6X≤ ≤ Y≤ ≤ 0 9Z≤ ≤

42.2148 10P −= ⋅

0 Z≤ ≤ cm it contained 90 rows, in the 
interval 9 cm it contained 10 rows. The grid was uniform considering spacings 
between columns and sheets.  

X 

Y 

Z 
24

6

9

12
6

12

Fig. 5. Initial geometry of problem 3. 

24Z≤ ≤

Spirodonov V.F. et al.  11



Proceedings from the 5LC 2005 

The domain  0 cm was stationary up to the moment of time t=650 mcs. After 
that moment the grid was kept uniform in the spacings. In Fig.6 domain cross-sections 
with planes X=0, Y=0 and X=Y (diagonal cross-section) at the moment of time t=750 
mcs are presented (the cross-section was plotted on the ground of solution symmetry). In 
Fig. 7 the instability development is presented for different moments of time. 

9

=

Z≤ ≤

 

a b c 
 

Fig. 6. Problem 3. Domain cross-sections for the moment of time t=750 mcs:  

a  is the cross-section with plane Х=0; b is the cross-section with plane  Y=0; c  is the 
cross-section with plane X=Y. 

 

 
a 

 
 
 
 
 
 
 
 
 

 
b 
 

c 

Fig 7. Problem 3. Instability development at different moments of time: a – t=500 
mcs; b – t=660 mcs; c – t=750 mcs. 

Computation results of this problem obtained with the LEGAK-3D complex agree 
well with the results, obtained with the MEDUZA-3D complex (Bakhrakh et al., 2004).  

Problem 4. Expansion and compaction of the spherical shell.  The initial problem 
geometry with the concentration field is presented in Fig.8.  

The domain 0<r<814 cm is filled with vacuum. The domain 8.14 cm<r<8.8 cm is the 
shell with the equation of state of the Mee-Gruneisen type with the parameters 

. In the domain  8.8 cm<r<15 cm 
explosive is disposed. The equation of state for the explosive and the explosion product 
are 

3
00 07.82 / , 3.5474, 4.9 / , 3g cm c km s nρ γ= = =

3,)1( =−= γργ eP . The domain 15 cm<r<30 cm is filled with vacuum. 
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Initial conditions:         
3 3

shell explosive

shell explosive shell explosive

7.82 / , 1.67 / .

0

g cm g cm

Е Е U U

ρ ρ= =

= = = =
.  

Parameters of the explosive:  caloricity Q=3.61 
kJ/g, detonation rate D = 7.6 km/s. 

Initiation of detonation takes place in the point 

with coordinates x=0.0, y=15.0 cm, z=0.0 (Fig. 10, 

point C).  

The problem was computed up to the moment of 

maximum shell compaction.. 

 
Fig. 8. Initial geometry of 
problem 4.  

 

The computational domain is fragmented into 100 points in rows, 30 points in 
columns and 60 points in sheets (complete spread): 30 points at the radius are for vacuum 
and the shell, 70 points at the radius uniformly by spacing for the explosive and vacuum. 
The type of interpolation along the rows is angular-uniform, the type of interpolation 
along the columns is as follows: the explosive is separated from the shell with the 
Lagrangian line; for rest points the type of interpolation was: uniform splitting without 
interpolation. In Fig.9 the picture of detonation wave distribution is presented. In Fig.10 a 
fragment of the computational grid is presented for the moment of time t=50 mcs. 

During the process the implosion of the shell takes place, at some moment of time its 
maximum density is achieved. During the computations the moment and the maximum 
value of the shell density was registered.  

 
a 

 
b 

Fig. 9. Problem 4. 3D cross-section of the concentration field for the system: a - t=15 
mcs; b – t= 35 mcs. 
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Fig. 10. Problem 4. Fragment of the computational domain for the moment of time t=50 

mcs. 

Also the problem was computed under the LEGAK-3D technique with initiation on 
the system axis.   

Computation results are presented in Table 2.  

Table 2. Problem computation results  

Technique 
Time of maximum shell 

compression,  
(mcs) 

Maximum average shell 
density,  
(g/cm3) 

LEGAK-2D  60.8 8.93 
LEGAK-3D  60.3 8.82 

 

Conclusion  

A short review of approaches to the development of 2D and 3D gas dynamic flow 
mathematical simulation, used by VNIIEF, is made.  

As an example the LEGAK-3D regular Lagrangian-Eulerian technique is presented in 
more detail.   

The LEGAK-3D technique for computation of 3D non-stationary flows of multi-
component continuum operates on multi-processor computation systems with distributed 
memory.  

The computations made with the LEGAK-3D technique proved its abilities.  

The computations, made in the multi-processor mode, showed the acceptable 
efficiency of parallelization of the complex. In case of matrix decomposition into 10 
rows, 10 columns and 100 sheets the efficiency was 60% for 100 processors.  

Deeper parallelization (decomposition in the third dimension) is supposed to be 
carried out at the following stage of the development of LEGAK-3D program realization. 
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