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1, Z, ® - cylindrical coordinates, i - the number of the
energy interval (group),

e=N;(r,z,D,t,u,@,v;) - the flux of neutrons or &(r,z,u,p,w
,,t) - radiation intensity function (desired function), of
group 1 at point (r,z,®D,t) that fly in direction, u=cos0,
-l<u<l, 0<¢<2m

g;=w, - average energy of photons in group 1,

Aw, - width of the interval in energy variable . ,

T=T(r,z) - medium temperature, E=E(T) - internal
energy,

&i,= &;(T, ;) - Plank function




the transport
* approximation in time is built using an implicit tvequﬁtilo nqeme;

 approximation in angular variables is built using the scheme of the method discrete
ordinates;
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* approximation in space 1s built with the finite difference method using regular spatial
grids on the template that contains solutions at the centers of edges and at nodes of a cell.

The extended template scheme has the following features: .
— P

* the scheme is conservative;
* it converges to the second-order solution of the

transport equation using arbitrary non-orthogonal

spatial grids;

: : : : : : /p
* the requirement of diffusion maximum is met in A

optically dense media;
» DSn-scheme quadratures are used to

approximate the transport equation in angular

variables.
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Methods

* Method of iterations in the right-hand part.

« Explicit cost-effective sweep (point-to-point
computation) algorithms.

« Parallel Techniques.

« Adaptive Method in space, angular, and energy
variables.
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Parallel Techniques

Small-block parallelization algorithm for solving 2D and 3D
problems using structured grids.

Parallelization in energy groups and neutron flight directions
for solving 2D problems using structured and unstructured

grids.

A pipelined algorithm of parallelization in layers and neutron
flight directions to solve 3D problems using structured
grids.

A combined algorithm of small-block parallelization and
parallelization in energy groups to solve 2D and 3D
problems using structured grids.
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spatial decomposition of a domain into para-domains

independent 1n angular variable solution of a system of grid
equations

each para-domain, for a current direction, 1s resolved with
the internal boundary conditions calculated during the
previous iteration, this allows the solution accuracy to be
preserved and doesn’t increase the total number of
iterations, as compared to the technique of sequential
computations

Interprocessor communications are performed
simultaneously with calculations owing to the use of
asynchronous transfer/receipt operations
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1D decomposition 2D decomposition

2D test. A single-domain spherically symmetric transport problem
In one-group approximation.

A spatial grid consisted of 1200 rows and 1200 columns.
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algorithm

Hemi-spherical space-domain model problem had been selected
as a test one: 80 rows were homogenously distributed at the
radius, 200 columns were homogenously distributed at the angle.

The order of the ——
angle

quadrature was

12, 1n total there En%
were 96

directions of the
particles 0+
motion. 2040)
Number of Nproc

energy groups 1D decomposition

——e——_ N0

group
domain

100

200
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algorithm

2D decomposition

Number of Number of Nulr)%?gf of E, % E, %
Processors | Group-domains | 4000 8 groups 28 groups
1 1 1 100 100
50 1 50 83 80
75 1 75 79 76
100 1 100 72 71
100 4 25 84 81
150 1 150 69 66
200 1 200 63 62
200 4 50 76 77




3 WA Pipeline type parallelization
g method for numerical solution

of 3D transport equation
Time diagram of the transport equation solution with parallelization

(Ng=6, N, =2, N =3)
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Step Processor 1 Processor 2 Processor 3
clolo|ulelo|u] g o] 206ecnergy groups,
Llv e b - - b - L - |- |96 flight directions (Sg);
i 1 ; f T T . - 1 - | ~1000000 3D space cells
a oo ol fufal - |- |- | (144 layers).
5 1 3 1 1 2 3 1 1 5
6 1 3 2 1 2 4 1 1 6
e S e [Npr| 9 | 18 |36 | 72 144
9 | 2 2 1 2 1 3 1 3 5
0] 2 2122 |1 |4 ]1]3]°6 EN»
11 | 2 3 1 2 2 3 2 1 5 o 92 | 85 | 81 | 78 | 76
12 | 2 3 2 2 2 4 | 2 1 6
13 | - - - 2 3 3 2 2 5
14 2 3 4 | 2 2 6
15 - - - 2 3 5
16 2 3 6
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v'AM-S scheme (spatial variables)

v'AM-A scheme (angular
variables)

v'AM-E scheme (energy variable)
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Each cell of the reference spatial grid can be partitioned into smaller cells of an adaptive refined
grid (adaptive cells).

An adaptive refined grid is generated by partitioning into 2N equal ranges in each direction,
where N is the adaptive grid level.

Separate intervals in angular variable u of the reference grid can be partitioned into smaller
ones. The number of the subintervals in the reference interval of the grid in u should be 2N, N is

the adaptivity order.

The angular grid is refined only for the selected set of spatial cells. In different spatial grids
fragmentation to different numbers of smaller intervals in variable u of the reference angular

grid is admitted.

Development of criteria for and algorithms of partitioning a reference energy grid into smaller
energy ranges (groups) at those space points and those ranges of the reference energy grid,
where the solution in energy variable undergoes significant changes.

An adaptive grid is generated at the beginning of time step basing on the analyzed distribution
of the solution function over the reference grid obtained during the previous time step.

The solution functions are interpolated from the old grid to the new one. During reconstruction
of the adaptive grid, re-interpolation of the grid values is performed by normalized conservative
integration with weights.

The order of resolving space cells during point-to-point computation is determined on the
reference grid. With an adaptive grid present in a cell, the subsystem of equations
corresponding to the transport equation approximation on the adaptive grid of the given cell has
to be solved.



Nt Different refinements
in space variables
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Earasbwimetdll Re-interpolation of values
on edges of cells
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Computations for convergence

Selection of the reference grid and the adaptability level

Computations using an adaptive grid

Comparison between results and running times
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Slit benchmark
problem

® On the surface (R=0.1, 0<=Z<=0.2) isotropic
energy flux equal to one is given.

1.5
Y On a side surfaces (Z=0 and Z=0.25) the
11 “specular reflection” boundary condition is given.
II IV III
09 ——— On the other surface the “free surface” boundary
o condition (zero coming-in flux) is given.

0.1

1 1
! : ! T:0,00075 N:15 T:0.0035 N:70 T:0,007 N:140
| | : T:0.009 N:150

o Z T:0.06 M:750 : 1
0og 012 02
A O 0.714571
X, = F X, = T,=0.001
Domains |, lll, V

(transparent), A=0.1374

0.236429

Domains II,IV (dense), A=50.89

0143714
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One-side flow for R=1.5 Time=0.06
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(3.5 R sl ILLUMINATOR target’s
' cylindrical channel

Laser Beam
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25 energy groups;
96 flight directions (S,,);
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X-radiation spectrum




W ETesrni el Space distributions of
temperatures
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Laser beam

10 energy groups;

96 flight directions (S,,);

HOHLRAUM “labyrinth”

target

2
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T T T T T N 1 N
0.5 1.0 15 20 25
S, 10%cm

Power-supply on cone

Power-supply on inside of case
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substance temperature radiation temperature

g5 LU T NI 333 g5 U INIL 0.252
Iu.235:
0.218¢
0.201€
0.184¢
0.168
0.151%
0134
0.117¢
0.100¢
0.084
0.067:
0.050¢

0.033¢
0.016¢




