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Motivation
Consistency and approximation are insufficient to avoid unphysical modes

Electromagnetics
Failure to approximate ker(curl) by exact gradients gives rise to spurious
modes and instabilities in transient simulations.

MHD
Failure to maintain div-free leads to significant errors for small velocity due to
unphysical component in the Lorenz force Brackbill, Barnes; JCP 35, 1980
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Hyperbolic PDEs (conservation laws)
Failure to maintain conservation lead to wrong shock locations and speeds.

Incompressible flows
Failure to maintain discrete pressure in the range of the divergence
of the discrete velocity leads to spurious modes and/or locking.
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Examples

Collocated Mixed FEM for incompressible flow (same stencil for div and grad) and Ph ∉ divVh
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Examples

Lagrange C0 FE solution
Ker(curl)={0}

Low order edge FE solution
Ker(curl)={grad p}
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Solutions that work

Discrete models must reflect mathematical
structure of continuum models

Lax-Wendroff theorem:
If approximation computed by a conservative and consistent method
converges, then the limit is a weak solution of the conservation law.

Grid decomposition property (Fix, Gunzburger, Nicolaides, 1978)
A discrete Hodge decomposition property is necessary and sufficient for
stable and accurate mixed FE discretization of the Kelvin principle.

Staggered FD and FV (MAC, Yee’s FDTD, Box integration)
Conservation requires placing different variables at different grid locations
so as to achieve discrete Stokes theorem.
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How to achieve compatibility?
Compatible discretization requires:

Differential forms provide the tools to encode such relationships

  Integration:  an abstraction of the measurement process

  Differentiation: gives rise to local invariants

  Poincare Lemma: expresses local geometric relations

  Stokes Theorem: gives rise to global relations

  Fields are observed indirectly by measuring global quantities (flux, circulation, etc)
  Physical laws are relationships between global quantities (conservation, equilibrium)

In most physical models

  Mathematical tools to discover and encode structure of PDEs
  A discrete framework that mimics that structure: mutually consistent notions of

- Discrete vector calculus, Hodge theory, entropy condition, conservation…
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Algebraic topology approach

Framework for mimetic discretizations

– Translation: Fields → forms → cochains
– Basic mappings: reduction and reconstruction

 Combinatorial operations: induced by reduction map
 Natural operations: induced by reconstruction map
 Derived operations: induced by natural operations

Branin (1966), Dodzuik (1976), Hyman & Scovel (1988-92), Nicolaides (1993),
Dezin (1995), Shashkov (1990-), Mattiussi (1997), Schwalm (1999), Teixeira
(2001)

Algebraic topology provides the tools to mimic the structure

– Computational grid is algebraic topological complex
– k-forms are encoded as k-cell quantities (k-cochains)
– Derivative is provided by the coboundary
– Inner product induces combinatorial Hodge theory
– Singular cohomology preserved by the complex
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Differential Forms
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Chains and cochains
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Combinatorial operations

Discrete derivative

Discrete integral
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Natural and derived operations
Inner product
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Mimetic properties
Discrete Poincare lemma (existence of potentials in contractible domains)
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Mimetic properties
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Discrete ∗ operation

Natural definition

Derived definition
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Problems with the discrete ∗
Action of ∗ must be coordinated with two other discrete operations

!"δ∗∧(•,•)

———✓✓∗D

—✓———∗N

Analytic ∗ is a local, invertible operation ⇒ positive diagonal matrix

Construction of ∗ is nontrivial task unless primal-dual grid is used!
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Implications

A consistent discrete framework requires a choice of a primary operation
either ∗ or (⋅,⋅) but not both

The natural inner product is the primary operation in our approach

– Sufficient to give rise to combinatorial Hodge theory on cochains
– Easier to define than a discrete ∗ operation
– Incorporate material laws in the natural inner product, or
– Enforce material laws weakly (justified by their approximate nature)

A discrete ∗ is the primary concept in Hiptmair (2000), Bossavit (1999)

– Inner product derived from discrete ∗ 
– Used in explicit discretization of material laws
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Algebraic equivalents
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Reconstruction and natural inner products
Co-volume Mimetic Whitney
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Mimetic discretization: translation to forms
1st order PDE with material laws

1st order PDE with codifferentials

2nd order PDE
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Direct and conforming mimetic models
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Theorem (Bochev & Hyman)

Assume that ! is regular reconstruction operator. Then, the direct
and the conforming mimetic methods are completely equivalent.
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Mimetic models with weak material laws

 Mimetic discretization

– Does not require a primal-dual grid complex
– Explicit discretization of material laws is avoided
– Construction of a discrete ∗ operation not required 

Translate to an equivalent constrained optimization problem
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Conclusions
 Algebraic topology provides powerful tools for mimetic discretizations
 We presented a mimetic framework where:

– All operations defined by two mappings: reduction " and reconstruction !
– The central concept is the natural inner product

 The framework consists of three operation types
– Combinatorial integral and derivative
– Natural inner product and wedge product
– Derived adjoint derivative, Hodge Laplacian

 Choice of natural and derived operations governed by internal consistency
 Operations provide discrete vector calculus and combinatorial Hodge theory
 Instead of explicit discretization of material laws they are

– incorporated in the inner product or
– imposed weakly through equivalent constrained optimization problem

 Direct and conforming mimetic methods are identical for regular !
– Differences between FV, FD and FE are largely superficial
– Distinctions arise primarily from the choice of reconstruction operators


