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Abstract
• It has been analytically proved that consideration of various

physical processes, such as viscosity, dispersion, or kinetics
of phase transitions, leads to different parameters of
rarefaction shock waves emerging in materials having non-
convex equations of state.

• One-dimensional simulations confirm these results.
• Hence, the problem of selecting a single and “correct”

rarefaction shock wave should be solved at the level of
physical model selection and depends on major physical
processes to be ignored, when writing the ideal gas dynamics
equations.
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Introduction. Admissibility by the vanishing
viscosity method - 1

• Equation of state p=P0(v) is smooth enough, strictly monotonous and has only one
section of “reverse” convexity
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Two Renсkin-Hugoniot requirements ⇒ the mass velocity of the rarefaction shock
wave is
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The rarefaction shock wave (p1,v1)→(p2,v2) in the limit self-similar solution should
meet the requirements
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Introduction. Admissibility by the vanishing
viscosity method - 2

• Possible variants of
positions of
Rayleigh-Michelson
straight-line segment
v=VRM(p) for
rarefaction shock
wave (p1,v1)→(p2,v2)
meeting the
necessary
requirements (3) and
(4).
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Introduction. Admissibility by the vanishing
viscosity method - 3• An impact transition

(p1,v1,u1)→(p2,v2,u2) is
considered admissible,
if there is a classic
solution to the gas
dynamic equation
system for viscous gas
with any positive
coefficient of viscosity
µ>0 that connects
points (p1,v1,u1) and
(p2,v2,u2). Such impact
transition is said to be
admissible by the
vanishing viscosity
method: Galin, G.Ya.,
“On the Theory of
Shock Waves," DAN
USSR, 127, 55-58
(1959).

• It is the dotted line.
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The Method of Vanishing Normal Dispersion - 1
• Consider the small normal dispersion (η=const, η→+0) in 1D gas dynamics

equations in Lagrangian variables
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We say that the rarefaction shock wave (p1,v1,u1)→(p2,v2,u2) is admissible by normal
dispersion (or admissible by the method of normal dispersion), if there is a classic
solution to the system of gas dynamics equations 5 and 7 with normal dispersion and
with any positive value of dispersion coefficient η>0 that connects points (p1,v1,u1) and
(p2,v2,u2).

Consider the structure of time-independent shock wave and determine conditions under
which equations 6 and 7 have continuous solutions of the form
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The Method of Vanishing Normal Dispersion - 2
• Theorem 1. In the self-similar Riemann problem with non-convex

equation of state there is a rarefaction shock wave admissible by the
method of vanishing normal dispersion. This rarefaction shock wave is the
single one uniquely determined by the following features. First, in plane
(P,V) the segment of Rayleigh-Michelson straight line v=VRM(p) of the
rarefaction shock wave (p1,v1)→(p2,v2) is tangent to the equation of state
v=V0(p) at its end point (v1,p1) and, secondly, the Rayleigh-Michelson
straight line  intersects the adiabatic curve v=V0(p) at an intermediate
point and at the end point (p2,v2), so that the integral for v=v2 equals zero:
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The Method of Vanishing Normal Dispersion - 3

•  The adiabatic curve
with the non-convex
equation of state and
Rayleigh-Michelson
straight lines of the
rarefaction shock
wave admissible by
the method of
vanishing normal
dispersion (p1→p2)
and the method of
vanishing viscosity
(p1вязк→p2вязк, dotted
line).
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The Method of Artificial Interphase Kinetics - 1

• Assumed that a material consists of two mixed phases with convex equations of
state v=V1(p) and v=V2(p) for each of the pure phases, the equilibrium equation
of state     v=V0(p)≡Θ0(p)⋅V1(p)+(1−Θ0(p))⋅V2(p)        is strictly monotonous,
however, it has one non-empty range of non-convexity, where Θ0(p) is a strictly
monotonous equilibrium concentration of the first phase.

• In the artificial interphase kinetics method the non-equilibrium equation of state
v=V(p,Θ)≡Θ⋅V1(p)+(1−Θ)⋅V2(p)    is used and the concentration Θ(t,m) of the
first phase is described by the non-equilibrium equation of the phase transition
kinetics
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with positive time of phase relaxation τ=const→+0 and positive function ω(Θ,p)
continuous over the set of arguments, which describes the dependence of the “rate”
of interphase relaxation on pressure and phase concentrations. Viscosity and
dispersion are not taken into consideration.
Akhmadeyev, N.Kh., Akhmetova, N.A., Nigmatulin, R.I. "The Structure of Shock-Wave Flows
with Phase Transitions in Fe Near the Free Surface," Journal of Applied Mathematics and
Engineering Physics. No.6, 113-119 (1984)
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The Method of Artificial Interphase Kinetics - 2
Case of not intersected EoS of pure phases

• Consider a case of not intersecting equations of state of two pure phases, v=V1(p)
and v=V2(p):                      V2(p)>V1(p).

• Theorem 2. Let the equations of state of two pure phases v=V1(p) and v=V2(p) be
not intersected. Then, there is a rarefaction shock wave obtained using the method
of artificial interphase kinetics. This is a single rarefaction wave , which is
uniquely determined by the following feature. In plane (P,V) the Rayleigh-
Michelson straight-line segment v=VRM(p) of the rarefaction shock wave (p1,v1)→
(p2,v2) is tangent to the equilibrium equation of state v=V0(p) at its end points
(v2,p2) and (v1,p1).

• The parameters of the rarefaction shock wave obtained using the method of
artificial interphase kinetics are the same as the parameters of the rarefaction wave
obtained for the equilibrium equation of state v=V0(p) with the method of
vanishing viscosity.

• Bondarenko, Yu.A., Sofronov, V.N. " Rarefaction Shock Wave Non-Uniqueness:
the Role of Interphase Kinetics," Voprosy Atomnoy Nauki I Tekhniki. Ser. Math.
Model. Phys. Process. Issue 1, 28-46 (2004).
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The Method of Artificial Interphase Kinetics - 3
Case of intersected EoS of pure phases

• Consider the method of artificial interphase kinetics for a case, when the equations
of state of two pure phases, v=V1(p) and v=V2(p) intersect at a single point (p3,v3),
p1>p3>p2 and assume that   P2(v)>P1(v) at v<v3, and     P2(v)<P1(v) at v>v3.

• Theorem 3. Let the equations of state of two pure phases v=V1(p) and v=V2(p)
intersect at a single point (p3,v3). Then, there is a rarefaction shock wave obtained
using the method of artificial interphase kinetics in the self-similar Riemann
problem. This rarefaction shock wave is a single one and it is uniquely determined
by the following feature. In plane (P,V) the Rayleigh-Michelson straight-line
segment v=VRM(p) of the rarefaction shock wave (p1,v1)→(p2,v2) passes through
the phase intersection point (p3,v3), is tangent (from below) to the equilibrium
equation of state v=V0(p) at one of its end points, (v1,p1) and intersects (from
above and with no contacts) the equilibrium equation of state at the second of its
end points, (p2,v2).

• In case of intersected equations of state of pure phases, the parameters of the
rarefaction shock wave obtained using the method of artificial interphase kinetics
significantly differ from that of the rarefaction wave obtained for the equilibrium
equation of state v=V0(p) using the method of vanishing viscosity and method of
vanishing dispersion.
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1D Computations Rarefaction Shock Waves - 1

• Task 1: c(ρ)=bkρ at ρk−1< ρ< ρk, b1=4.0, b2=1.0, ρ1=(32/15)1/3.

• Computations with viscosity (a) and dispersion (b)
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1D Computations Rarefaction Shock Waves - 2

• The interphase kinetic equation of the form
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Akhmadeyev, N.Kh., Akhmetova, N.A., Nigmatulin, R.I. "The Structure of Shock-Wave
Flows with Phase Transitions in Fe Near the Free Surface," Journal of Applied
Mathematics and Engineering Physics. No.6, 113-119 (1984).
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1D Computations Rarefaction Shock Waves - 3
• Task 2. The mixture of two phases without intersection of state equations of pure

phases.
• Computations with viscosity (a), dispersion (b), and interphase relaxation (c).
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1D Computations Rarefaction Shock Waves - 4
• Task 3. The mixture of two phases with intersection of EOSes of the pure phase .
• The two-phase equation of state with intersection of phases:
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1D Computations Rarefaction Shock Waves - 5
• Task 3. The mixture of two phases with intersection of EOSes of the pure phase .
• Computations with viscosity (a), dispersion (b), and interphase relaxation (c):

-10

-5

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1 1.2

X/Cot

P

abc

 



18 of 19

1D Computations Rarefaction Shock Waves - 6
• Task 3. The mixture of two phases with intersection of EOSes of the pure phase .
• The shock wave position in task 3 computations with viscosity (a), dispersion (b,

and interphase relaxation (c) ):
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Conclusion

• The results obtained in the paper prove that parameters of rarefaction
shock waves depend on the processes inside the smeared rarefaction shock
wave front.

• The results allow a unequivocal conclusion that the problem of choosing a
single and “correct” rarefaction shock wave during simulation (including
numerical simulation) of gas dynamic processes should be solved at the
level of selecting physical models and depends on the major physical
processes to be ignored, when writing the ideal gas dynamics equations.

• This conclusion is not new, in general. The review paper by Kulikovsky
(1988) gives many examples of such a kind:
Kulikovsky, A.G. "Severe Discontinuities in Continuum Flows and Their
Structure," Works of V.A.Steklov Institute of Mathematics of the USSR Academy of
Sciences. 182. 261-291 (1988).


