
Comparison of Four Parallel
Algorithms for Domain Decomposed

Implicit Monte Carlo

Thomas A Brunner (SNL)Thomas A Brunner (SNL)
Todd J. Todd J. Urbatsch Urbatsch and Thomas M. Evans (LANL)and Thomas M. Evans (LANL)

Nicholas A. Gentile (LLNL)Nicholas A. Gentile (LLNL)

Joint Russian-American Five-Laboratory Conference on
Computational Mathematics/Physics

19-23 June 2005
Vienna, Austria

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy’s National Nuclear Security Administration under contract DE-AC04–94AL85000.

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University
of Californian for the United States Department of Energy under contract W-7405-ENG-36.

This work was performed under the auspices of the U.S. Department of Energy by University of California
Lawrence Livermore National Laboratory under contract NO. W-7405-ENG-48.

• Typical user mesh
• Cylinder of one material
• Another material outside

Particle Simulation On A Decomposed Mesh

• Typical decomposition
• Load balances zones
• Irregular boundaries

Physical Simulation

• Particles born in mesh
• Scatter in materials
•Deposit energy in

zones
• Photons are

terminated
– by leaving mesh
– being absorbed
– or reaching cenus

(the end of a time
step).

Decomposed Simulation

•New events for
decomposed mesh:
– Particles must be

exchanged between
processors.

– Need to determine
globally when all
particles are finished.

• These four algorithms
do these two steps in
different ways.

Algorithm 1: KULL

1. Each processor transports
local particles until all have:
– hit processor boundaries,
– been absorbed,
– leaked off mesh, or
– reached census.

2. Blocking exchange particles
buffered on processor
boundaries with neighbors.

3. Global sum tallying number
of remaining particles to
simulate on all processors.

4. If particle sum is nonzero,
go to step 1.

Problems With Algorithm 1

• Blocking sends for particle
exchanges cause serialization of
communication.

• Multiple synchronization points
during a time step for global sum that
is used to determine if all particles
have finished.

• Algorithm 2 modifies Algorithm 1 to
use asynchronous particle
exchanges, fixing the first problem.

• Algorithm 3 eliminates the
synchronization points, but it still
does not scale well. Another decomposition to

illustrate the serialization of
Algorithm 1.

Algorithm 4: Improved Milagro

• More frequent asynchronous
particle exchanges of smaller,
fixed-size buffers.
• Master (Processor 1) keeps

track of total number of
particles completed
– Collected asynchronously

through a binary tree.

Test Problem 1: A Hot Box

•Uniform temperature box
– 60x60x60 zones
– Each zone about one mean free path

•Reflecting boundary conditions
• Perfectly load balanced
•Constant work (strong) scaling study
– Subdivided same exact problem on multiple

decompositions
– Same exact result from all four algorithms

Hot Box Constant Work Study

Performance hit due to sharing
memory bandwidth between
processors within a two
processor node. Efficiency for
Algorithms 2 and 4 almost
linear after this.

Algorithm 1 not scalable
due to serialization of
exchanges as well as
global sums.

Test Problem 2: Mild Load Imbalance

• Vacuum Box
•Reflecting boundaries
• Initially Cold
• Temperature source on

one side
• Initially load imbalanced
•Becomes balanced by

end

Vacuum Box Constant Work Scaling
More frequent exchanges of particles in
Algorithms 2 and 4 actually improve efficiency
as number of processors increases.

Peak performance of these
algorithms. All particles
finish on processor 1, then
are transferred to
processor 2.

Conclusions

• The improved Milagro algorithm, Algorithm 4,
scales almost linearly for load balanced
problems.
•Critical to avoid all synchronization points in

algorithms, either through blocking sends or
global sums.
• Each processor must have the same parallel

overhead.
•More frequent exchanges of particles can help in

load imbalanced problems.

