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High-order methods can be used for shock

capturing.

> Spectral and 10*-order compact schemes for spatial derivatives
> 4th-order Runge-Kutta timestepping
» Variable-order artificial viscosity

> 8th-order dealiasing filter

Mach 10 shock
on SF6 cylinder

What are the benefits?




The multi-fluid large-eddy equations can be cast

in Navier-Stokes form.

0 +V-(ou-J )=0 (species continuity)

m+V- (mu + pd _;)= pg  (mixture momentum)
E+V: \gu + (05 —;)u - qJ= m-g  (mixture energy)
p=p(YH -e), H =fc (T")dT' (mixture EOS)

J = ,OD VY =Y i [JD VY (diffusive mass flux)

; = M[VU + (Vu)T ]1. (/3 — % M)(V . u)% (viscous stress)

q-= kVT (conductive heat flux)

Solution via: 10t-order compact derivatives

4th-order Runge-Kutta timestepping




Hyperviscosity damps high wavenumbers.

u=pu,+C,p|V'SA™*?, r=246...

B=B,+CspV'S A r=246..
s=(:5), §=%(Vu+uv)

D= Gaussian filter of width 4A

Increase r for higher formal accuracy.



A dealiasing filter is applied to the conserved

variables after each R-K substep.
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Dealiasing filter preserves functions to 8t order.




Spectral/compact methods capture fine-scale

features of Richtmyer-Meshkov instability.

128 ppw 256 ppw 512 ppw

Spectral

M=1.2

CENO

Simulations of Collins-Jacobs air-SF6 experiment




Diffusive schemes can fail for Rayleigh-Taylor

instability with very fine-scale perturbations.

Spectral

CENO

Implicit numerical dissipation wipes out perturbations (8 ppw).




Hyperviscosity remains inactive as long as flow is
well resolved.

DNS LES

LES > DNS at low Reynolds number



Spikes and Bubbles

— — DNS |

LES extends DNS results to higher Reynolds number.
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Final Reynolds number > 20,000
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Subgrid-scale models reduce Gibbs oscillations.
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Vorticity o ’ Viscosity

Subgrid-scale viscosity and diffusivity act differently.
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A compressible breaking wave provides

quantitative code verification.

1.15

1) Sinusoidal initial

105 conditions.

2) Sine wave steepens into
shock after traveling
several periods.

P/ Py

3) Solution shown in moving

0.95 frame of reference.
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Exact solution is available until shock forms at t=t,.
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Convergence rates depend on order of accuracy

of subgrid-scale models.

5 Compressible breaking wave Sinusoidal initial conditions.
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Spectrum broadens as flow evolves.
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Errors for compact scheme are small when flow is

smooth.

Compressible breaking wave
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Late-time errors are due to thickness of shock.
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Spectral and compact methods can capture

shocks.

Compressible breaking wave

115 T T ' | ' [ ' I
..................... PLMDE 1.414 sec.
1.05
— — — — WENO5 9.76 sec.
-
Q
o Compact 2.91 sec.
0.95
Converged
ogs L——1 1 . 1 .

-0.5 -03 -01 0.1 0.3 0.5

(x+c4t) / A

3 points in shock.



Spectral and compact methods provide

superior representation of high-wavenumbers.

Compressible breaking wave at t=(3/4)t,
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Can a deconvolution model fix the WENO spectrum?
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Compact methods exhibits rapid convergence

for Shu’s problem.
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Implicit viscosity in MILES algorithms causes phase shift.

17



Spectral/compact methods produce superior

results on the Taylor-Green vortex.
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Semi-Analytic Solution
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rDEnergy initially at
bottom wavenumber.

2N Vortex stretches and
bends.

E@™Vorticity coalesces at
small scales.

Ei<DEnergy cascades to
higher wavenumbers.

Upwinding and flux-limiting corrupt high wavenumbers.
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Spectral methods with hyperviscosity perform

well for decaying turbulence.
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The empirical coefficient is tuned to match the energy spectrum from

the grid turbulence experiment of Kang et al.
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Conclusions

=EDTNS (Truncated Navier-Stokes) is a useful paradigm for LES.

Ex@PSpectral and compact methods can capture shocks when
combined with a spectral-like bulk viscosity.

EPSGS models based on high-wavenumber damping preserve
convergence rates of high-order numerical methods.

k<P High-wavenumber SGS models allow for broader inertial range by
minimizing extent of dissipation range.

d<cDCompact-LES provides superior resolution of turbulent flows
compared to MILES.

High-order LES can succeed where low-order MILES fails.
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