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Why is this interesting? ©

* Smoothed Particle Hydrodynamics (SPH) is the oldest of what is
now a class of meshless hydrodynamic techniques.

* Pros:
— Lagrangian and robust (no mesh to tangle).

» Well suited for problems with complex flows or high
deformation rates.

— Simple to incorporate new physics.

e History variables are not a problem — never any need to
handle advection or remapping.

— Naturally allows for gaps in material to form and open.

* Cons:
— Sharp interfaces difficult to represent accurately.
— More computationally expensive then mesh-based techniques.
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Cartoon view of how SPH works. “_EJ

* Physics variables defined at an arbitrary set of points in space.

* Points move with material velocity, arbitrarily reconnecting with

new neighbors as simulation proceeds.

* Each point has an associated ¢

resolution or smoothing scale
(h), representing the range
over which it interacts with
other points.

* SPH formalism describes
continuous representation of
nodal variables and their
spatial gradients.

m, p, €, 0%, V&, ..

[
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velocity (m/s)

Material Modeling. E

* SPH is traditionally applied to problems of compressible gas
dynamics.

* However, it is simple to add solid material models.

— I’ve added the Gruneisen EOS and Steinberg-Guinan rate
independent strength model to my SPH code.

Flyer plate impact experiment Taylor anvil @ 150usec

100
80 r
60 r
40 +
20

Exp'eriment‘ 3
Kull
Spheral -- 1-D -

20 -
40 |
-60 |
-80

time (microsec)

2005 5-Lab Conference: SPH and Materal Failure, UCRL-PRES-209491 4



A Simple Material Failure Model. =

* Benz & Asphaug published a series of articles (1994, 1995, 1999)
detailing a simple scalar damage model in an SPH code.

— Statistical model of fracture based on the continuum model of
Grady & Kipp (1980).

* We explicitly seed a set of flaw activation energies for each SPH
node according to the Weibull distribution.

— Number density of flaws having failure strains lower than ¢ is
assumed to obey a power-law:

n(e) = ke™

* Define the strain at node / (¢;) based on the maximum eigenvalue
of the tensile stress o', and Young’s elastic modulus E:
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Material Failure Model cont. =

* If the strain at a node exceeds one of it’s assigned flaw activation

energies, then it accrues damage (D 2 [0,1]) at a rate
dD'? _ < _ 0.4q
dt R R
— ¢, is the crack propagation speed
— ¢, is the longitudinal elastic wave speed.

— R, is the radius of the volume relieved by the crack, taken as a
function of the resolution scale of the node h.

* The scalar damage D is used to create a new node of damaged
material, dividing the mass between the original and damaged
material as

/] — A
m. = (1 — D;)m;, mp;, = D;m;
* The damaged material does not have strength and does not
support tension.
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Example: initial flaws in a steel rod.

* At problem setup we assign a population of flaw activation
energies to each node:

gt — L1V e (1, V]

Number of flaws assigned to Distribution function of flaw

each node activation energies
1e+06
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Example: Tensile steel rod. E

Vol

0

* Take a 20x5 cm steel rod with initial velocity V(aj) —

— Creates initially constant strain rate throughout the rod.

* Enforce constant velocity on the ends of the rod.

— Forces the ends of the rod to draw outward, regardless of the
tensile strength of the material.

Pseudocolor
Var: x velocity
994.8

— 4974

x velocity, t =0 usec oo

—497 .4

.

Max: 994.8
Min: -994.8
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Expected fragment size. “_EJ

* Grady & Kipp compute an expected fragment distribution based on
the population of flaws which activate and grow to a damage D = 1.

— For a constant strain rate é
2\ — 6¢g  (m+3)7 2—m/(m+3)
L(€) = “Sa 5
87703/@
(m4+1)(m~+2)(m+3)

* In the following tensile rod examples, for v, = 10 m/sec and v, =
100 m/sec we should expect typical fragment sizes of 8.6 cm and
2.9 cm, respectively.

— This implies a 20 cm rod should break completely across in 2-3
places for v, = 10 m/sec, vs. 6—7 places for v, = 100 m/sec.
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Tensile steel rod: vy=10 m/sec @ t=500 usec
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Var: mass dgrsity
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Cumulative mass (fraction of total)

Tensile steel rod: vy=10 m/sec @ t=500 usec |

Fragment properties

Fragment mass
distribution function
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Tensile steel rod: v,=100 m/sec @ t=500 psec

Pseudocolor
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Cumulative mass (fraction of total)

Tensile steel rod: v,=100 m/sec @ t=500 psec

Fragment properties

Fragment mass
distribution function
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Tensile steel rod: v0=10 m/sec — strain

* So why do these rods break where they do?
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-

Tensile steel dis

ial velocity field on a 2-D steel disk

ini
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Tensile steel disk @ t = 25 usec: mass density

* These plots show all materials (damaged and undamaged).
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Tensile steel disk @ t = 25 usec: radial velocity

* Plotting undamaged material only, at two different resolutions.

* Note outermost radii have turned around by this time.

n.= 100 n.= 200
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Cumulative mass (fraction of total)

Tensile steel disk @ t = 25 usec: fragments
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Tensile steel disk @ t = 25 usec: damage

* Plotting undamaged material only.

* Note partially damaged material spread throughout disk.

n.= 100 n.= 200
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Expanding tube gas gun experiment E

* Model a series of experiments fragmenting metal tubes due to the impact
of a plastic projectile within the tube.
— Vogler TJ, Thornhill TF, Reinhart WD, Chhabildas LC, Grady DE, Wilson
LT, Hurricane OA, & Sunwoo A, “Fragmentation of Materials in
Expanding Tube Experiments,” Int. J. Impact Engng, 2003; 29:735-746

Anvil: Steel
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Expanding tube — early evolution

* Velocities during projectile entry.

8.0 usec 13.75 usec

Pseudocolor Pseudocolor
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Expanding tube - tube during early expansion E

* At 26.75 usec, projectile & '”r‘r’%dew
plug are pushing out against
the tube, causing extensive [
damage at the expansion
point. i
Exterior, undamaged material, Interior, undamaged material, Exterior, damaged material,
velocity velocity mass density
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Expanding tube — experiment results.

Pseudocolor
Var: mass d;mify
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Expanding tube — VISAR data

* This experiment was instrumented with three VISAR velocity
probes on the exterior of the tube.

— Probe A @ 25 mm from anvil
— Probe B @ 20 mm

400
— Probe C @ 15 mm
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How might we couple to a mesh-based code? “_@

* There are a few possible routes to coupling a meshless scheme
such as SPH with a traditional mesh-based code:

— Direct hybridization, possible with a code that can use
unstructured polygonal elements (or potentially triangular)

meshless points

meshed region ®
\ [ ) /
A

polygonal psuedo-zone
® Jo— | interface
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How might we couple to a mesh-based code? ,,_EF

— Interpolating data back and forth for overlapping mesh and
meshless regions.

* Properties for meshless region solved on meshless points,
and then mapped back onto the mesh

@ ° ]
meshed region @ meshless points
o)
A
e o
o ©
o) o ©
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Things missing/remaining to be done. “E‘

* Apply current techniques to a wider variety of interesting
experiments.

* Benz & Asphaug failure model only accounts for tensile failure,
need to follow shear failure as well.

— Can enhance current algorithm, implement other more
advanced models (Johnson-Cook, MARFRAC, etc.)

* Fragments should be identified during the course of a run and
spun off as new materials.

— Prevent strength from operating between fragments that
happen to run into one another.

* We really should follow where melting occurs, and reset both
failed and undamaged material if/when refreezing.

* Assorted numerical improvements:

— Improved surface treatment of variables and gradients,
summed mass density, ASPH, ...
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