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P CEPTRE Code

(Coupled Electron Photon Transport for Radiation Effects)

* Time-independent, deterministic, coupled
electron-photon transport code on unstructured
mesh

 Numerical solutions to the Boltzmann transport N
equation which describes the particle distribution E,
in phase space (r, E, Q) E,Q

* Physics of particle-media interactions properly ¢

characterized by cross sections scattering

_ o process E,Q
» Discretization of Phase Space

— Multigroup approximation in energy along
with Legendre expansion of scattering cross
sections

— Discrete-Ordinates approximation in direction
— Finite-Element approximation in space
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CEPTRE Features

Multigroup energy discretization
Discrete ordinates angular discretization
Arbitrary order of anisotropic scattering
Unstructured-mesh Galerkin finite elements
Second-order forms of the transport equation
— Self-Adjoint Angular Flux (SAAF)
— Even-0dd Parity Flux (EOPF)
Parallel implementation with spatial domain decomposition
Object-oriented program design with C++
Integrated into an architectural framework (Nevada)
Build on parallel Krylov solver libraries (Trilinos, AztecOOQ)
Simultaneous space-direction solve
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o Properties of Second-Order Form

Lo avend.o)ok.a) o vhok.o)

* Transport operator on left is self-adjoint

 Removal operator is an effective cross
section — inverse appears

» Scattering included in transport operator
* Right side is fixed within an energy group
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" CEPTRE Employs a Unique Solution Strategy

« Slow convergence rate Conventional Source Iteration
for electron tranSpOrt Outer Iteration over Energy Groups

e Low para||e| efficiency Inner lteration over Directions
due to coupling in
directions from scattering

Direct or lterative
Solutions of Space

« Fast convergence rate CEPTRE

f()r electr()n transpgrt Outer lteration over Energy Groups
* Good para”el eff|C|ency Simultaneous Space-Direction
o Large Storage Solutions (lterative)

requirement
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Solution Algorithm

4 directions

Sparse block matrix

Symmetric Positive Definite
System

1 2
1+ * Number of block rows:

xxxx xxx x| [xxx x| [xxxx
x X X X| |x xxx| [xxxx| |xxxx —
[xxxx [xxxx X X X X [xxxx} O NnOdeS
X e x| |xx kx| |xxxx [xxxx .
‘ . ;  Block size
1x x x xNx x x x| [x x x X [x x x x
X X X X| Ix x x x| [x xxx O X X X X N N
) oo i XXX — NairectionsX Ndirections
XXX x| [xxxx] [xxxx| [xxxx| [xxxx]| + Blocks are full due to coupling
XX X X| | xxxx| [xxxx| [xxxx||xxxx .
% 5% e, (s 5 e |3 3¢ | [aeare . [ ¢ ¢ from scattering
Ix x x x| [x xx x| [xxxx]| [xxxx]|xxxx _
5 %% 5 oo oxxx] ex x| Tailor-made for VBR data format
X X X X O X X X X| |x xx x| [xxxx 5
X X X X X X X X| |x xx x| [xxxx ~
X X X X| X X X x| [X X x x| XXX x| * Storage (Ndirections) XNnodes

x X X X| [x x x x] [xxx x| [xxx x| : ~ 2 1.5
O [xxxx} XX XX |xxxx| |xxxx ¢ Run tlme (Ndirections) X(Nnodes)

XXX X| [xxxx| [xxxx| |xxxx
| x x x x| [xxx x| [xxxx| [xxxx]

Sandia
r.h National
Laboratories




X

Parallel Iterative Algorithm

* Preconditioned Conjugate-Gradient method with domain
decomposition

« Extensive use of existing parallel iterative-solution
libraries (Trilinos, AztecOO)

« Fast convergence rate for electrons

« Slow convergence rate for photons on FE meshes with
refined cells (90% of run time)
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Cable SGEMP Analysis

« Will electronics be disrupted/damaged by an incident
x-ray source that will cause photo/Compton-emission
electrons from material surfaces and energy and
charge deposition within its materials?

» Generates electrical fields on cable shields and
conductors within cables, a phenomenon referred to

as cable System Generated Electromagnetic Pulse
(SGEMP)
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& ) Cable SGEMP Simulation Process

.

« Computational capability developed for cable SGEMP simulations
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consists of two distinct calculations:
« CEPTRE performs radiation transport simulation
« CABANA performs electrical response simulation

CEPTRE provides energy deposition, current and charge profiles
induced by radiation to CABANA

X-RAYS

SN
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=~ Cable SGEMP Simulation Needs
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Requires accurate
resolution of dose-
enhancement and
charge profiles near
conductor/dielectric
interfaces

— Results in extremely small
mesh cells near the
material interfaces

— Use of higher-order finite
elements

— lll-conditioned matrix for
photon-transport
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=~ CEPTRE Numerical Difficulties

< ——— Photons — >

< Electrons——— >

* Small mesh nearly

02 1024 ASCI Red Processors transparent tO phOtonS
40 photon groups * Matrix extremely ill
40 electron groups conditioned
23,300 FE nodes
72 discrete directions . Slow CG convergence
268 million unknowns - Effective preconditioning
essential

<,
\\\\\\I

€CG Solver Time per Group (s)

(@)
[S)
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= =& CEPTRE Speed-Up Strategies

« Solve photons on linear FEM and electrons on quadratic
FEM (different mean free paths/ranges)

« Lower order quadrature and Legendre expansion of cross-
sections for photons (scattering is more isotropic than
electrons)

 Employ a block diagonal preconditioner
 Employ 1st order Sn transport for photons
« Will speed-up cost accuracy?

— In radiation transport (knock-on charge at
conductor/dielectric interfaces)

— In electrical response (final load charge)
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:/’Consider the RG402 Coaxial Cable

56 keV

Average Energy of the Incident
Spectra is 56 keV

S8 Quadrature

P5 Legendre Expansion of
Scattering Cross-Sections

Outer Radius

Material (cm)
Steel 0.04780
Copper 0.05940
Silver 0.06060
Dielectric 0.15113
Copper 0.17907
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=~ Refined RG402 Mesh
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L0

52,569 Quad8 elements and
158,104 nodes

S8 problem has = 3.16
million unknowns

Shown to be converged for
CEPTRE calculations

Finest layer of cells = 0.18
um thick
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Speed-Up of Photon Solve

« 32 processors on ICC

« Electron Solve Employs S8, P5 Legendre Expansion on quadratic FEM

Photon Photon
Q knock-off SGEMP Solver Time Finite Element
Photon Sn/PL | (electrons/cm) (nC/cm) (hrs) Mesh Type R
S8/ P5 3.39e-04 6.57e-17 65.75 QUADRATIC .
S8/ P5 3.47e-04 8.14e-17 5.21 LINEAR .
S8/P3 3.04e-04 8.25e-17 5.33 LINEAR .
S4/P3 v 3.04e-04 o 8.07e-17 | 0.88 v LINEAR

Accuracy and Speed-Up compared with S8, P5 Photon Solve on Quadratic Mesh:

Sn/PL Ceptre Results SGEMP Response Speed-Up
S8/P5 2.3 % 24 % 12.6
S8/P3 10.3 % 26 % 12.3
S4/P3 10.3 % 23 % 74.7
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Much easier to solve than
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original transport equation
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‘ Block Diagonal Preconditioner Speed-Up
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Outside of Nevada framework and using a special modified version
of Aztec the block diagonal preconditioner has shown speed-ups on
the RG402:

— S8 speed-up of 4.3 observed
— S16 speed-up of 8.0 observed
— 80 ASCI-Red Processors

We are in the process of implementing this preconditioner in the
Nevada Framework version of Ceptre which uses Trilinos and
AztecOO

Using the preconditioner should not affect a cable’s electrical
response
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First Order Sn Transport for Photons

« First order Sn transport of photons is efficient

— Parallel multidimensional implementation is complex
due to introduction of cycles in “sweeps”

— Development is underway to implement this using
new techniques to handle these parallel sweeps

 Allow solution of photons on same FE mesh as electrons
* Coupled with second order Sn transport of electrons
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Summary

Cable SGEMP analysis requires very accurate resolution of dose-
enhancement and charge at material interfaces

Refined mesh necessary to meet this criterion makes the photon
transport with the 2"9 order form very expensive

Speed-up can be obtained with minimal effect on radiation transport
results

Electrical response of a cable is very sensitive in radiation transport
results

— Change of 2.3% in radiation transport yields change of 30% in
cable response

Future work is very promising for reducing CEPTRE run-times
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