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Overview

• “AMR 101” for single fluid gas dynamics

• Issues for multimaterial, material strength, other physics

• Assorted results
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Why AMR?

• Goal: to focus computational resources on regions of the domain
required for accuracy

• Why do that?

– Hopefully, realize CPU savings

– Hopefully, realize memory savings
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In this talk we focus on Berger-Oliger-Colella
style adaptive mesh refinement
• Features of Berger-Oliger-Colella approach

– Locally refine patches of the domain in space and time
– Each patch is a logically rectangular structured grid
– Patches are “properly nested”
– Patch consists of high “error” zones grouped along with some (but not many)

low-error zones
– Grids are dynamically created and destroyed to allow for changing features of

unsteady flow
– Patches vary in size spatially and temporally
– Subcycling in time (recursive time step)

is possible, not necessary
• For the purpose of this talk

– Physically rectangular grids
– Cell-centered variables
– Single level time advance is explicit, direct Eulerian, discretely conservative,

2nd order accurate, structured grid
• structured grid advance achieved through use of ghost zones
• 2nd order accurate  linear interpolations are sufficient

– Subcycling in time
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Berger-Oliger-Colella AMR uses dynamic
hierarchy of meshes and recursive time step
• Spatial refinement

• (Recursive) coarse level time step:
– Advance coarse level
– Advance fine level
– Synchronize levels
– Regrid current and all finer

levels

level 0

level 1

level 2

Ti
m

e

Levels of Spatial Refinement
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• Refinement Ratio: 2, 2
• Refinement in space and time
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“Proper nesting” of patches is enforced
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Level 0

Level 1
Level 2

• Base Grid is Level 0 and
covers all of computational
domain

• Locally refine spatially to
create a new level.  Tag
structures, errors, etc. for
refinement.

• Finer levels strictly
contained in next coarser
level -> proper nesting

•  Solution on a level (union
of grids) maintained as a
fundamental object

“Proper nesting” of patches is enforced
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Why variable sized, patch-based AMR?
• Some alternatives

– Cell-by-cell refinement (e.g., Rage)
• Advantages:

—  minimal memory
—  simple data structures (quadtree, octtree)
—  grid generation is simpler (no clustering required)

• Possible disadvantages (my guess)
—  higher communication costs
—  more “irregular” zones

– Fixed patch size (e.g., Grace)
• Advantage: simplicity, cheap communication
• Possible disadvantage (my guess)

—  memory inefficient: ratio of refined low error zones higher than patch-
based or cell-by-cell

• Really, why?
– Original reason: vectorization on Crays
– Justification for not changing:

• Patches are a convenient unit for distribution of problem among processors
• Note: not domain decomposition

— Parent/children grids not
forced to be on same processor
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General form of recursive time step for an
explicit conservative scheme
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Explicit conservative scheme example
• Cast equation in conservation form, for example
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Explicit conservative scheme example (con’d)
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Conservative interpolation uses limited slopes and
volume and mass coordinates

• Note: this scheme is not conservative
interpolation via advection

• It’s just good, old linear
(conservative) interpolation
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Volume coordinate interpolation for a spatially
rectangular grid is just vanilla linear interpolation
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Coarsening is just volume or mass weighted averaging
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Flux correction changes values of coarse cells that share
a face with a fine cell but are not covered by fine cells

This zone
is being
modified

o
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Regridding level L determines new grids at level L and
greater
• For ilev = finest_level-1, L, ilev—

– Tag high error cells in level ilev to be refined
• High error determined by

—Richardson extrapolation
• estimate error as difference between coarsen and advance

and advance and coarsen
—Feature detection (gradients, interface, temperature, …)
—Other

• Tag zones in a buffer around high error zones so that high error
zones remain (hopefully) refined between regrid steps

—Buffer width = 1 zone * (regrid interval)
• If ilev<finest_level-1, project tagged cells from level ilev+1 onto ilev

—Ensures proper nesting
– Group cells into clusters
– Fit smallest possible rectangle around each cluster

• Break rectangles into manageable sizes  (< max_nx X max_ny)
• Create new fine grids (trivial)

– Generate find grid data
• Copy on intersect from old fine grids
• Otherwise, conservatively interpolate from underlying coarse grid
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Clustering algorithm is essentially a smart bisection
algorithm

Example from Bell,
Berger, Saltzman,
Welcome, SIAM J.
Sci. Comput., Vol.

15, pp 127–138, 1994
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Issues for multimaterial and material strength
• Interface tracking

– Always refine the interface: done
– Otherwise, issues are

• Formulation of flux correction step
• Derefinement, re-refinement issue: loss of information

– “state-of-the-art”
• Always refine the interface, or
• Refine interface when no longer quiescent

—Do not derefine
—Note: flux correction not needed because no “flux” across

coarse-fine boundaries at material interface
• Material strength

– History variables
– Strain tensors

• “state-of-the-art” for both: don’t do anything special
– Flux correction: distortional deformation tensor treated w/ non-

divergence formulation
• Alternative (Miller & Colella): full conservative treatment
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Issues for other physics
• 0-dimensional physics: no issue
• Explicit, “hydro-like” physics: no issue
• Non-local physics (diffusion, transport)

– Synchronization step involves non-local (parabolic, elliptic) solves
• Computational and development expense

– Alternate solution: rework time step
• Hierarchy time step:

—  Hydro on all levels
—  Diffusion on all levels (via a multilevel coupled solve)
—  …

• Advantages
—  avoid synchronization step
—  allows for possibility of using existing unstructured grid

package
• Disadvantage

—  no subcycling: use a single (fine level) time step everywhere
—  need to translate between two data structures
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Development Issues for other physics
• Approach to date: mostly “write from scratch”

– Except: many AMR developers use an infrastructure:
• Boxlib, SAMRAI, Chombo, AMRCLAW, ChomboCLAW, Overture,

AMRita, AMROC, GrACE (others?)
• Ideally, need approach that uses existing code and leaves existing code

alone (as much as possible)
• ALE-AMR team in CASC is exploring “AMR-izing” CALE in a non-intrusive

manner using SAMRAI
– Currently have an AMR built on CALE for multimaterial Lagrange or

Euler, strength, HE burn
– Uses “co-routine”-like idea

• Coroutines can be simulated using threads with explicit scheduling
(threads as software engineering device)

– Development overhead:
• O(100) (of 225k) lines of code in orig sources
• O(10k) new, SAMRAI related lines of “separate” code

– Much work to be done
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Example using SAMRAI shows both decent
scaling and low AMR overhead

   Non-scaled benchmark
4 level Sedov Problem
ASCI IBM Blue Pacific

   Scaled benchmark
3 level linear advection
Linux MCR Cluster
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Vertical Shocktube at the University of
Arizona (Prof. Jeff Jacobs)

• Ignore small time offset due to experimental false bottom

t = 0.162 ms

Raptor (Boxlib) computation of “re-shock” at
M=1.3, Air/SF6

AMR is well-suited for computing
reshock
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•
t = 6.276 msec, a = 0.3

~5.86cm

t = 6.276 msec, a = 0.221

~5.05cm

M=1.2 RM Initial Amplitude Sensitivity Study with Raptor

~5.67cm

t = 6.003 msec, a = unknown

Figure courtesy of Prof. Jeff Jacobs,
Univ. of Arizona
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Shock SF6 Jet Interaction Expt.
Jacobs, Phys. Fluids A, vol. 5, no. 9, 1993

• Drive a weak shock wave, M=1.095, through a cylindrical column of SF6
• Use PLIF (planar laser induced fluorescence) to visualize the cross-section

Experiment
Raptor Simulation
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3D Raptor calculation of shock-bubble interaction took 7
hours on ALC Linux cluster
• Mach 2.88 shock
impinges on an argon
bubble
• R120

• ~200 µm zoning
• red: vorticity mag.
• blue: argon conc.
• cutaway: soap film
conc.

Niederhaus, Oakley, Anderson,
Ranjan, Bonazza, and
Greenough, Physics of Fluids,
in review
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Basic Architecture

double* den;
double* rho;
double*
emat;
…

cale_step();

timestep loop {
  cale_step();
}

single block
structured grid
1 CPU

multiple patches
multiple levels
N CPU

timestep loop {
  communicate_bdry(); // <- SAMRAI
  patch loop {
    set_patch_environment();
    cale_step();
  }
}

level 0 level 1

patch 0 patch 1patch 0

double* den;
double* rho;
double*
temp;
…

cale_step();

CALE CALE-AMR
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CALE-internal data dependencies

timestep loop {
  communicate_bdry(); // <- SAMRAI
  patch loop {
    set_patch_environment();
    cale_step {
      … deeply nested with lots of stack-based state
      compute_new_u();
      communicate_new_u?(); // new u doesn’t exist yet!
      compute_q(new_u); // <- requires bdry new_u
      …
  }
}

Drilling down into CALE’s internals exposes a difficult problem:

• Knuth’s “coroutines” (1963) neatly solve this problem
– Permits “start” and “stop” at will without “losing where you are”
– Needed for multiple patches on a processor

• Neither C nor C++ support coroutines
• Coroutines can be simulated using threads with explicit scheduling (threads as

software engineering device)
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Coroutine-enabled Synchronization
xcale {
   laghydro {
     accel();
     coroutine_yield();
     strain();
     strsheat();
     work();
   }
   coroutine_yield();
   advec();
…

for_each(patch) {
  set_patch_environment(n);
  coroutine_spawn(n);
}
// sync vel for stress/strain calc
communicate_bdry(rvel,zvel);
for_each(patch) {
  set_patch_environment(n);
  coroutine_yield(n);
}
// sync soln for advection
communicate_bdry(full_soln);
…

• Powerful device for synchronizing a once serial code
– Minimally intrusive in existing source base
– Fully general transfer of control
– Lossless wrt execution environment

• stack, temporaries, etc.
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Parallel Demonstration: Shaped Charge
• CALE Physics:

– Eulerian hydro
– Mixed materials

•Al, Cu, HE, Air
– Strength
– HE Burn

• Ordinary CALE input deck
– jet02

• 10 processors of mcr
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Parallel AMR Demonstration
• CALE’s Lagrangian hydro: simple blast wave

– < 50 lines of modified CALE code
• Ordinary, unmodified CALE input deck

– Augmented by SAMRAI input deck for parallel and AMR
parameters

• 16 processors (mcr)
– dynamic load balancing at each regrid

• 4 grid levels, ratio 3x3
– Base grid 30x30
– Effectively 810x810 at finest level

• Refinement criteria: 2nd differences of pressure
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Parallel AMR Demonstration
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Performance: Overhead
• Serial overhead: baseline check of library coupling

– Sedov problem: 650x325 for 50 steps
– CALE:  30s, 97% physics
– CALE-AMR: 31s

•Context switch (coroutine) overhead is ~0
– Memory:  doubles at init time, otherwise ~0

• Parallel overhead:
– Mixed zone communication requires care, some opt
– No SAMRAI induced barriers to efficient comm.

• Development overhead: O(100) (of 225k) lines of code in orig
sources

– For comm. synch points, fixing loops for ghost zones
– O(10k) new, SAMRAI related lines of “separate” code

• Parallel speedup?
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Performance: Overhead
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Current Status
• Verified to full precision (‘diff’able solution):

– In parallel:
•Multi-material clean Lagrangian hydro
•Mixed Lagrangian (t=0) hydro

• Verified to “looks right”:
– jet02 input deck (shaped charge)

•Mixed material Eulerian (fixed mesh)
•Strength
•HE Burn

– Remaining issue is 1st order advection at bdry of patches
• AMR capability – spatial refinement

– Relatively simple interlevel operators
– Clean Lagrangian hydro
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Current Limitations
• No support yet for:

– Parallel problem generation
– ALE motion (Lagrange or Euler only)
– Slide lines
– Edits
– Interactive graphics (?)
– Other non-local physics: MHD, etc.

• On the other hand, many things are essentially “free”:
– Equations of state
– HE Burn
– Sources
– Local physics is generally trivial
– VisIt for visualization
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Elastic-Plastic Materials
• Von Mises yield condition
• New AMR considerations:

– Interlevel operators for tensor
quantities

– Interpolation/Coarsening
physical considerations:

• Current research questions
– Interpolation near the elastic-

plastic transition
– Yield condition violation
– Negative plastic strains

• Integrating R. Becker’s material
modeling library
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Design goals for interlevel transfer operators
(coarsening and refinement)
• Freestream preservation of density, velocity, internal energy

• 2nd order accuracy (linear reconstruction)

• Monotonicity

• Local conservation

• Exact inversion of refinement by coarsening
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Refinement uses linear interpolation of
primitives and volume/mass coordinates
• Ensures

– Conservation
– Monotonicity and freestream preservation of primitives

• General 1-d forms:

• Dimensionally split and unsplit extensions to 2,3-d
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Coarsening uses projection of nodes and
simple volume/mass weighted averaging
• Mesh is formed by

selection of every r’th
mesh point

• Weighted averaging of
flow variables
constructed to
identically invert
refinement operator:
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Eulerian ALE-AMR calculation of Mach 10
double Mach reflection

• Shown: density at t=.21 from 3
level ALE-AMR calculation of
Mach 10 double Mach reflection


