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The purpose of this research is to study the effects of order 
and grid resolution on flow physics in 2D and 3D  
Richtmyer-Meshkov instability and mixing with reshock

• Apply a high-resolution, Eulerian, shock-capturing reconstruction-
evolution method to 2D and 3D single- and multi-mode Richtmyer-
Meshkov instability with reshock

• Compare to experimental data (Collins-Jacobs and Vetter-Sturtevant) 
for validation; extend simulations/analysis to longer t

• Quantitatively study dynamics and structure of flow: time-evolution of 
mixing width, global mixing and flow statistics, energy spectra

• Investigate effects of order of flux reconstruction (formal order of 
accuracy) and grid resolution on mixing and turbulence

• Discuss implications for simulating experiments and assessing 
turbulent transport and mixing models

The topics of this investigation are critical to the
development/validation of subgrid-scale and turbulent

mixing models for shock-induced flows
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2D and 3D simulations were performed using the 
weighted essentially non-oscillatory (WENO) 
method

• Euler equations solved using local Lax-Friedrichs flux-split finite-
difference reconstructions

• Convex linear combination of all possible polynomial interpolations 
taken to achieve ENO property
– High-order non-oscillatory solutions obtained using nonlinearly-

weighted set of stencils that avoid crossing discontinuities
– Local characteristic decomposition for flux-splitting

• 3rd-order TVD Runge-Kutta time-evolution
• 3rd-, 5th-, 7th-, 9th-, or 11th-order WENO reconstruction
• Adaptive domain method increases number of grid points dynamically
• Interface tracked by mass fraction
• Multi-resolution hybridization with high-order central-difference 

schemes possible (not used here)
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The Collins-Jacobs Ma = 1.21 air/SF6(acetone) 
shock tube experiment was simulated using the 
WENO method (5th-order shown below)
• Initial amplitude a0 = 0.183 cm
• Wavelength λ = 5.9 cm
• Adiabatic exponent γ = 1.24815
• Initial interface thickness 0.5 cm
• Computational domain 8.9 cm × 75 cm
• Grid resolutions 128, 256, 512 points 

per λ

• Amplitude growth in very good 
agreement with experimental data 
before reshock

• Discrepancy following reshock
due to reflected rarefaction in 
experiment, but not in simulation

Density at t = 5 ms
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Simulation and experimental density are in good 
agreement initially; lack of rarefaction causes reflected 
shock to interact with interface ~ 1 ms sooner

t = 2 .502 ms t = 4.009 ms t = 5.015 ms

t = 2.5 ms t = 4 ms t = 5 ms

t = 7.005 ms

t = 6.47 ms

t = 7.781 ms

t = 6.78 ms

PLIF images from Collins and Jacobs after reshock

5th-order WENO simulations
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Comparison of mixing layer widths obtained from 3rd-, 
5th-, and 9th-order simulations on fine, medium, and  
coarse grids shows significant differences

Ratio of widths to 9th-order, fine grid widthWidths from 1-99% cut-off in mass fraction

• Widths generally agree before reshock, and for very short time following 
reshock (except for 3rd-order medium and coarse grid)

• Widths begin to diverge at later times during ‘quasi-decay’ phase
• The more dissipative the simulation, the smaller the width
• 9th-order results show apparent convergence



JCMC 6/05 7

Quantities characterizing the “mixing” are also 
quite sensitive to the order and grid resolution

Pt• Consider a fast kinetic reaction model in 
which mixing fluids are “reactants”

• In terms of the mole fraction X, amount 
of product produced is:
– Xp = X/Xs for X ≤ Xs and
– Xp = (1 - X)/(1 - Xs) for X > Xs (Xs = ½)

• Averaged product mole fraction 〈Xp〉(x,t) 
provides information on how well mixed 
“reactants” are across layer

• Total “chemical product” is

(ab, as are bubble, spike amplitudes)
• Pt slowly increases before reshock, 

indicating increased “mixing”, with 
additional “mixing” during layer 
compression at reshock

dxXtP b

s

a

a pt ∫=)(

• Following reshock, Pt increases 
rapidly, indicated increased 
“mixing”

• Algorithms with increasingly large 
numerical diffusion predict 
increasingly large “mixing”
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t = 6 ms t = 7 ms t = 18 ms
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Turbulent energy spectra (particularly the turbulent 
enstrophy and density variance spectra) are quite 
sensitive to both order and resolution

• Kinetic energy 
spectra differ 
mainly in 
intermediate 
scales

• Enstrophy
spectra are 
highly 
sensitive to 
dissipation

• Density 
variance 
spectra extend 
to larger k as 
dissipation 
decreases with 
higher order 
and resolution

after reshockbefore reshock late-time
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Significant differences are observed in the density 
at t = 6 ms (before reshock) among the different 
orders and resolutions

coarse finemedium
• Interface becomes 

much sharper with 
increasing order and 
resolution

• Very large numerical 
dissipation at 3rd-
order inhibits roll-ups 
and formation of 
structure

• 9th-order results 
exhibit most small-
scale structure both 
within roll-ups and on 
interface
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Significant differences are also observed in the 
density at t = 18 ms (quasi-decay phase) among the 
different orders and resolutions

coarse medium fine

• 3rd-order results highly diffused to late 
times, with high degree of symmetry

• Much finer scale structure appears in 
9th-order results across all resolutions

• 5th- and 9th-order results exhibit  
disorder
– Reshock breaks symmetry
– Very small numerical dissipation in 

9th-order simulations allows small 
numerical instabilities to grow

• Structure observed in 9th-order, fine 
grid density most reminiscent of 
structure in PLIF images from shock 
tube experiments
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Simulated density Schlierens show that much 
more wave structure is captured at 9th-order 
following reshock, with a sharper interface
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• Smaller difference 
between 5th- and 
9th-order results 
compared to 3rd-
and 5th-order 
results

• Numerical 
dissipation tends 
to thicken waves

• Slight differences 
in wave patterns 
due to small 
difference in times 
(± 0.01 ms)
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The Ma = 1.5 air/SF6 Vetter Sturtevant experiment 
with wire mesh and membrane is modeled using a
two-mode initial perturbation
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Initial perturbation model:
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• Mixing layer growth in very good 

agreement with experimental data 
following reshock (5th-order shown)

• Amplitude growth also in generally 
good agreement with Mikaelian
reshock model h(t) = 0.28 A+ ∆u t

• Adiabatic exponent γ = 1.24815
• Initial interface thickness 0.5 cm
• Computational domain (test 

section) 272 cm × 61 cm
• Grid resolution 1292 x 257
• Orders: 5th, 9th, 11th
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The mass fraction isosurface exhibits the differences 
in small- and larger-scale structure obtained from 
simulations using different orders of reconstruction

5th-order 9th-order 11th-order

ai
r (

sp
ik

e)
 s

id
e

SF
6

(b
ub

be
) s

id
e

• Both large- and small-scale structure different
• 9th- and 11th-order simulations exhibit smaller scale structures than present in 5th-order data
• Even smaller scale structures exist in 11th-order simulation than in 9th-order simulation
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Comparison of mixing layer amplitudes obtained from 
5th-, 9th-, and 11th-order simulations also shows 
differences after reshock and at late times

• Amplitudes agree before reshock
• Between reshock and arrival of 

reflected rarefaction at t ~ 6 ms, 
5th-order amplitude is smaller than 
9th- and 11th-order amplitudes

• Difference in a(t) after t ~ 6 ms is 
due to reflected rarefaction
– As order increases, reflected 

rarefaction is stronger, 
“pulling back” interface more, 
resulting in a larger a(t)       
(9th- and 11th-order)

– If reflected rarefaction is 
weakened, interface is not 
“pulled back” and growth 
following reshock continues 
to be rapid (5th-order)

• At t ~ 9 ms, layer reaches end wall 
of shock tube

t (ms)

Mixing layer amplitude from 0.1-99.9%     
cut-off in mass fraction

Before 
reshock

After 
reshock

Reflected 
rarefaction

9th-order
5th-order

11th-order

a(
t) 

(c
m
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Quantities characterizing the global “mixing” 
due to numerical diffusion are also quite 
sensitive to the order and grid resolution

Pt

• Before reshock, Pt is 
similar among three 
cases

• After reshock, Pt differs 
among all cases

• Higher numerical 
diffusion results in larger 
“mixing”, as in 2D

9th-order
5th-order

11th-order

t (ms)
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Quantities at all spatial scales characterizing “mixing” and 
turbulence in reshocked, Richtmyer-Meshkov instability 
exhibit a significant dependence on order and resolution

• As shown in 2D, independent of O(1) error from shock, late-time flow 
in quasi-decay regime is especially sensitive to numerical algorithm

• 3rd- and 5th-order WENO are excessively dissipative
• 9th-order WENO shows evidence for numerical convergence of 

quantities dominated by large scales, at resolutions considered in 2D
• As expected, quantities determined by gradients (e.g., enstrophy

spectrum) are most sensitive 
• Qualitatively and quantitatively, approximately doubling order gives 

results similar to doubling resolution in 2D
• Study was systematic and self-consistent, using same algorithm and 

initial/boundary conditions, but with different order and resolution
• Further comparisons among 3D results in progress

The numerical evidence presented here suggests that formally
high-order methods are desirable for simulating turbulent transport
and mixing with or without explicit models for unresolved physics

The numerical evidence presented here suggests that formally
high-order methods are desirable for simulating turbulent transport
and mixing with or without explicit models for unresolved physics
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