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Abstract

Numerical simulation of multidimensional particle transport
problems falls into the category of the most complex and labor-
intensive application problems.

The paper reviews the numerical simulation methods used at
RFNC-VNIIEF for various categories of multidimensional
transport problems (linear and nonlinear, time-dependent and
time- independent, etc.). It briefly describes, in particular,
some specific features of application of the methods, such as
Monte Carlo method and the method of angular coefficients
(view factors), and gives a detailed analysis of deterministic
grid methods. Special emphasis is put on the issues
concerning nonlinear multidimensional time-dependent linked
problems, where many other physical processes are
considered along with the transport process.

2 of 61



I 1875 e 25,

V7enna Austiia

Monte Carlo method for numerical solution of transport problems
(Zhitnik A.K. et al, 1999), (Kochubey Yu.B. et al, 2000),
(Donskoy E.N. et al, 1993)

Solvable problems:

« Linear particle transport problems (transport of neutrons and
photons, calculation of critical parameters Keff and A,

calculations of protection against gamma-neutron radiation,
calculation of nuclear radiation safety of containers for

transportation and storage of spent nuclear fuel, etc.).
 Transport of charged particles

« Solution of linked problems with consideration of other

physical processes along with transport processes.
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Specific features of numerical methods and
algorithms In use

To provide simulation of physical processes to a rather high accuracy and
high efficiency of computations, the following methods have been
implemented in Monte Carlo codes :

 Method of maximum cross-sections for simulation of trajectories that ensures
the same speedup both with spectral constants and group constants.

« Consideration of thermal motions of medium nuclei during simulation of
trajectories on cold cross-sections of a material (lvanov N.V. et al, 2003). This
allows avoiding computations of cross-sections at given temperatures.

« Method of accidental collisions during simulation of electron trajectories, in
which Fokker-Planck approximation is used to describe collisions with small
transfers of energy and momentum (Donskoy E.N. et al, 1993).

 The developed model for accounting generation of annihilation and
bremsstrahlung photons that allows sufficiently accurate description of their

distribution without simulation of electron and positron trajectories.
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 The code has been parallelized based on MPI library
of interprocessor communications. The algorithms
in use demonstrate a high parallelization efficiency
on a large enough number of processors.

 Another area of Monte Carlo method application to

transport problems is the development of
simulation algorithms for grid geometries. The
developed algorithms allow using arbitrarily
structured grid geometries and the simulation
efficiency is actually independent of cell sizes of the
grid in use.
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Computations of radiation transport in vacuum using the method of view factors
(Babayev Yu.N. et al, 1978), (Zel'dovich Ya.B. et al, 1966), (Dementiev
Yu.A. etal, 1984), (Babayev Yu.N. et al, 1995), (Bazin A.A et al., 1998),
(Dementiev Yu.A. et al, 1983)
Solvable problems:

* Engineering heat problems.

* Linked problems of X-ray transport in optically
transparent regions with taking account of a
number of other physical processes (laser
thermonuclear fusion problems, etc.)

* |n such regions, the integral radiation transport
equation obtained in assumption of no
radiation/medium interactions is solved.
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J(P,t)-J*(P,t)=q(P,t,T)
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“Hemisphere” method
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through the gap in laser facility
«Iskra-5»

X-Ray photograph
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Numerical solution of
multidimensional transport
problems using the methods of

finite differences and finite elements
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2D and 3D neutron transport problems

In group approximation __

The system of group neutron transport equations in cylindrical coordinate
system:




2D time-dependent problems of radiation and
material energy transport in group approximation

The system of group radiation transport equations written in cylindrical coordinate system:

where the transport operator is

Energy equation:
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Some assumptions underlying the numerical methods
used to solve transport problems:

1. The transport equation is approximated in time
using the implicit two-point difference scheme.

2. The transport equation approximation in space
IS constructed using non-orthogonal spatial
grids, namely:

« Regular non-orthogonal grids of convex
guadrangles;

* Irregular non-orthogonal grids of arbitrarily
shaped convex polygons.
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Fig.1. A structured quadrangular (regular) grid
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The grids mentioned above were used to construct a
number of conservative finite difference schemes:

the extended-template scheme (Pleteneva N.P. et al,
1989), (Moskvin A.N. et al, 2005);

« the scheme with introduction of closing relations
based on moment equations;

« the scheme based on the use of adaptively refined
grids in phase space (Shagaliev R.M, 2004),
(Shagaliev R.M. et al, 2004);

« schemes of the discrete-ordinates method type are
used for the transport equation discretization in
angular variables.
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The schemes above have the following common features: with
the use of non-orthogonal grids they preserve important
features of DSn — schemes, such as the transport equation
approximation within a single phase space cell and,
consequently, a possibility to resolve systems of grid
equations using sweep (point-to-point) method of

computations (Troshchiyev V.E., 1976).

Nevertheless, they differ from each other in the accuracy of
approximation using essentially non-orthogonal grids, in
monotone behavior of the grid solution and some other

features.
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4. The numerical solution to the system of grid
transport equations with the known right-hand
side can be found using the sweep method (point-
to-points computations) (Troshchiyev V.E, 1976)
and modification to this method oriented to a

multiple-group case (Fedotova L.P. et al, 1991).
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3. The method of source iterations is used to solve the system of
multiple-group grid transport equations numerically. The
following methods are used to accelerate the iterative process
convergence:

« FCA method for the category of time-independent linear
multiple-group problems of calculating the critical parameter
K.+ (Evdokimov V.V. et al, 1994), (Evdokimov et al, 1996),
(Moskvin A.N. et al, 1996);

« KM method for the category of time-dependent nonlinear

multiple-group problems of radiation transport (Fedotova L.P.
et al, 1991).
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Finite-difference schemes
used to approximate 2D
transport equations using
non-orthogonal space grids
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Extended-template scheme

Multiple-group transport equation approximation

* in time: implicit scheme with weighting multipliers;

* in angular variables: method of discrete ordinates (S -quadratures);

* in space: using the extended template for non-orthogonal space grids

The extended template scheme features:
» the scheme is conservative;

« convergence to the transport equation
solution with the second order of accuracy
using non-orthogonal space grids;

 the scheme complies with the diffusion limit
condition in optically dense media;

* it uses DSn-method quadratures to
approximate the transport in angular variables.
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The scheme is built using the grid function values in a
cell, on sides and at vertexes of a quadrangular cell .

P

(4)
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1. Grid equations for particle ?frlﬁljc in the grid cells:
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2. Additional correlations in time variable and angular variable ¢

Nt =yNp +(1-y)Np, 0.5<ysl
NPO=an+(1—n)Nq_1 , 0.5=m=l 28 of 61
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. Additional space relations between the values of the desired function in
a cell, on sides and at nodes of a cell. The number of relations in the scheme
considered depends on the number of illuminated (exposed to particles)
quadrangular cell’s sides. Here the following three variants shown below in Fig.5

are possible depending on the values of u,,, ¢, ,,

el 1l

D

a) Npos =N, +(1-8)N,, Np,=3N,,+(-8)N,
NP(3,4)=O°5(NP3+NP4)9 NP0=6NP4+(1_6)NP
NP(4,1) =0Np, +(1 - 6)1\7131
Npg =O‘5(36_1)NP3 +O°5(1_6)(NP5 +Np, +NP4) 29 of 61
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One-group time-independent transport

""""""" 'A"A """"""" - equation specified in a cylinder with
v"”xex‘% ~ dimensions O0<R<1, 0<Z<2. Full cross-
A ﬂ"" ~ section a and multiplication coefficient
%X%X%X  are 0=1.34 and $=2.25, respectively.

The boundary condition is a zero
incoming flow.

........................................................................................................................................

Computations were made using an angular grid with 24 particle flight directions.
The problem statement provides for finding the values of the critical parameter A. The exact
value of this parameter found by convergence computations is A=0.1474. The table below
gives computation results for the problem obtained using Schemes 1 and 2. There were two
variants of computations using Scheme 1, they differed in the transport equation
approximation in angular variable ¢. Namely, in the first variant the standard approximation
of the discrete ordinate method was used (Scheme | in the table — DSn), and in the second
one approximation using some modified scheme was used (Scheme 1 in the table — MDSn).
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Table 1. The values of parameter in computations using
scheme 1 and scheme 2 for various spatial grids.

Grid
h h/2 h/4 h/8
Size of cells (h=0.1cm)
Sch.1
0.1471177 | 0.1473767 | 0.1474143 | 0.1474012
(DS,)
Sch.1
Rectangular 0.1627532 | 0.1522199 | 0.1487623 | 0.1477563
(MDS,)
Sch.2 0.162753 0.15222 0.148762 0.147756
(DS,)
Sch.1
0.1462831 | 0.1472815 | 0.1473650 | 0.147415
(DS,)
Non- Sch.1
.161 15212 1487131 477
orthogonal (MDSn) 0.1618866 | 0.15 36 [0.148713 0 95
31 of 61
Sch.2 0.161205 0.152042 0.148793 0.147811
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The balance equations for particles in space grid cells and the
corresponding moment equations are used to find the unknown
coefficients of the expansion in series.

1. Moment difference equation in angular variable .

2. Moment difference equations in space variables. Similarly to the
case described above, the simplified expansion in series
containing only the dependences on space bilinear variables is
used to construct such equation:

Z(BONN)+ =(ADN) + J(r.m)paN=J(z.n) p F
n o7
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Statement of the test problem.

The linear time-independent particle transport problem (1)-(3) is considered in axially
symmetric region {0<R<1, 0=sZ<2}. The source and the equation coefficients are taken as Q=1, a=1, 3
=1. The incoming flow equal to zero is specified for the boundaries parallel to R-axis (on the bases of
cylinder) and the boundary condition “mirror reflection” is specified for the boundary parallel to Z-
axis.

A series of computations was carried out using grids concentrating in angular and spatial
variables:[10x10, DS;]; [20x20, DS,,]; [40x40, DS,,].
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Fig.8. The profile of solution along the central
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The adaptive method of refined
grids in phase space

The idea of the method is that in phase space, where the problem
solution is to be found, some region (which is not a simply connected
one, in general) is separated, where the original grid cells are refined
to obtain cells of smaller sizes. (Shagaliev, 2004), (Shagaliev et al.,
2004). Such refinement of the grid cells can be made in space
variables, angular variables and energy variable.

@ ) \

[T\t 22 £
LLANN B

Fig. 9. Examples of refinement in space variables

Vienna Austria
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The transport equation approximation on non-orthogonal spatial
grids using the adaptively refined grids entails the problem of
preservation of the principal properties of the scheme used for
finding the numerical solution to the transport equation on the
reference grid, such as the transport equation approximation within
a single computational cell, conservatism of the scheme, a
possibility to solve the grid transport equation with the point-to-
point computation algorithm, a possibility to use acceleration
algorithms, and some others. An important feature of the developed
adaptive method of refined grids is that it ensures the solution to

the above problem.
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Benchmark problem. A rectangular region in 2D axially symmetric geometry is
considered. The region is presented in Fig. 10. The computational domain is
composed of two physical regions: Region 1 is a dense casing
{0=Z=<5;1<R=<1.2};

Region 2 is a transparent region {0 = Z<5;0<R=<1}, E=0.81 T, x_= A/T3, where
A =50.89 inregion 1 and A = 0.1374 in region 2.

R A
Physical region 1
1.2 / Y 8
/
1
I:> Physical region 2
0 5 7

Fig. 10. The system geometry in the 2D benchmark problem 37 of 61
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Fig. 11. Material temperature profile
along line Z = 2 at time 0.01 in the 2D
benchmark problem for different
reference grids:
—— — solution on the base grid 40x200;
— — —— calculation 20x100;
----- — calculation 10x50;
— calculation 10(4)x50(4);
— calculation 10(8)x50(8)
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The flow density bottom-to-top distribution along
boundaryr=1.0 for various options of the adaptive grid

construction
010
500,00 AN — mu 64 —mu 8 (3) o
—mu8 (3)** —mu 8 (3) ***

400,00 A

N

F7300,00 -

W

200,00 A

100,00 A

0,00 T T T T T 1
0,0 0,5 1,0 1,5 2,0 2,5 3,0 761




D 1825 e 20i5;

Vianna Atistiia

The flow density distribution from left to right along
boundary z=2.0 for various options of the adaptive grid
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The radiation temperature distribution in computations

T:0.001 N:100 0.880854

0.75503
0.629206
0.503381
0.377557
0.251733
0.125908
8.33035e-005

1

05.

0.

T:0.001 N:100 0.876772

1 0.751531
0.626289
0501048
0.375807
0.250566
0.125325
8.38957e-005

05.

T:0.001 N:100 0.880293

0.754543
0.628805
0.503061
0377317
0.251572
0125828

8.3902e-005

0.880718
0.754913
0.629108
0.503303
0.377498
0.251693
0.125888
8.32766e-005
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0503303
0377438
0.251633
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Finding the numerical solutions to various application problem
classes requires methods for acceleration

of convergence of iterations in source (in the right-hand side of the
transport equation) to ensure the computation efficiency.

For computations on linear time-independent problems of critical
parameter calculation we have developed and are successfully
using a flow consistent acceleration method (FCA method).

The brief description of the method and some

results of its numerical studies are presented below.
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Method)
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Fig. 13. The spatial grid cell
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The FCA method is constructed using the integral moment equations, namely, the
equations for zero and first moments of function N of the solution to the initial transport
equation that include the compensating sources of the simple iteration.

ZNS+1 + aNS+l _ (Bn(O)S + Q)L

;&2 (SLka -SL Wy, )+ (O‘ )”(0) (Q + F)
J

1,7.1)
Dk+1/2|_Q)k++1 + Py )‘ (P,: + P )J*' a-m-W,,,=FW,,,,, where kE(i,j,l)

I Jf( ny )deg
(Q nk)>0
Jf(Q n, )\Ide
(Q nk)<0
0P +(1-9 F§;,
o2 = ( +(1-9) k+1)+ ,where ke(i,j,1)
s = 0 P, + (1-8)P0 )+ F; iofe

W, = P! - P, ,whereke(,j,1i+1/2,j+1/2,1+1/2)
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Numerical studies of the FCA method
for the iterative process convergence
acceleration
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Region {0<x<1.5, 0<y<1.5, 0<z<1.5}

2D 3D
P N/A FCA N/A FCA
10. 9. 81 7 116 12
10. 9.9 331 7 300 13
10. 9.99 463 7 361 13
10. 10. 482 7 370 13

Results of the computations for reactor SNR-300

Method Number of iterations
Kellog method 143
Direct method 141
Method of inverse iteration 112

Method of inverse iteration + FCA 20 45 of 61



il Results of the computations for
the RBMK reactor channel

Vienna Austria

Method Number of iterations
Kellog method 229
Direct method 412
Source iteration method 555
Source iteration method + FCA 42
Source iteration method + FCA + 24

Chebyshev method
Homogeneous sphere R=10

o= Number of iterations
S DSA method FCA method
1. 221 8 6
2. 597 8 6
4. 1627 9 6
8. 3927 8 6
12. 6003 12 6
16. 7658 24 g ool
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The KM method is a two-step
iterative method.

Vienna Austria
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At step 2 of the KM method (corrector), the correction equation system of the following
form is solved:
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Mention some features of the group correction equations of
KM-method step 2:

1. The KM method is a conservative iterative method, with the
two major laws of conservation characteristic of the
transport equation, i.e. the law of conservation relative to
the particle transport and that relative to the medium-
radiation energy exchange, being simultaneously satisfied
at each iterative process step.

2. The KM-method step 2 group equations are of the same
form as the original group transport equations, which
allows the same difference methods as those for the
governing equations to be used for their grid
approximation.

3. The cost-efficient “point-to-point computation” method can
be extended to the numerical solution of the KM-method
step 2 correction difference group equation system.
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| step: predictor — like in the KM method
Il step: corrector — iterative:
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Numerical studies of the
KM3 method

Benchmark problem «Tube»:

RA

//r—— Region 2 (10x100)

1.2

/

1

Region 1 (10x100)

0

The number of iterations in region 2 (Nlter, =1, /=const=0.5)

Step
No.

10

t, sec

Sl

19108
3332
1559
2880

KM

14
24
27
61

sec
KM3

14
20
20
47

Sl

28696
6363
8477
7020

KM

26

121
101
233

sec
KM3

26
88
75
184

Sl

26454
7960
9146
8580

Ny

10
secC
KM KM3
35 35
238 174
179 135
435 347
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Techniques and algorithms
for parallelizing 2D and 3D
problems
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The development of highly efficient algorithms for parallelization of the problem class
under discussion is an involved methodological problem. There are a number of
objective reasons for this, among which the following should be primarily mentioned.

1.

As it is known, implicit schemes are mainly used to find the numerical solution to
the transport problem, hence, spatial grid cell computations should be performed
in some strictly determined sequence. When using non-orthogonal spatial time-
varying grids, the sequence of the cell computation may be different at different
time steps. In other words, in parallelization of this problem class in space
variables it is very hard, in contrast to the problems solved using explicit numerical
methods, to ensure a simultaneous uniform loading of all the processor elements
used.

In numerical solution of nonlinear transport equations the costs of the transport
equation coefficient computations are significantly different at various space
points, this leads to an additional disbalance of the parallel computations.

In numerical solution of the problem class under discussion a number of other
physical processes must be simulated along with the transport process in separate

sub-regions, this also significantly influences the parallel computation balance.
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As it was already mentioned above, numerical simulation of many
various categories of multidimensional time-dependent transport
problems leads to a heavy computational burden. We developed
effective methods of fine-grain parallelization oriented to a general
case of using non-orthogonal spatial grids to the problems above in
2D and 3D space approximations on multiprocessor systems
(Alekseyev et al., 2001) (Alekseyev et al., 1993) (Alekseyev et al., 1996).

These parallelization algorithms are to be presented at the
conference in a separate report. Here, | only demonstrate their
efficiency by the example of one 3D test problem. The problem
parameters are: 8 energy groups, 96 particle flight directions (S;),
250000 three-dimensional spatial cells. The efficiency is estimated
using the method of increase. The problem size remains unchanged
on each processor.
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The speedup versus the number of processors
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The efficiency of the combined parallelization algorithm for solving
the 2D benchmark (28 groups, 96 particle flight directions,

250000 spatial cells).
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The above-discussed numerical methods and
algorithms are extensively used at present for
computation of various application problems in
multidimensional geometries.

To demonstrate the capabilities of the methods
developed, below are some results of the
computations for 2D coupled time-dependent problems

that describe experiments on laser facility ISKRA-5 .
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* Three-temperature hydrodynamics

du_ 1 dz _ . ap _ oo

o pgrad(P+Q) E—u = p-divu

dE 1 1 1
o d ') dE, ) d( p) dEl.__(p +Q)d 0
dt fdt dt € dt dt I dt

* 1 ulti-group spectral radiation transport

aU\, . C _ abs ,
o +d1V3X$bS gradU,,=jy,—-cxy " Uy P

dE N
ar =y (ngs Uy=iv )

* Energy transfer by electrons and ions

JE 1. JdE. . |
Tte= —pdlv(xe-gradTe) Tt’= —pdlv(xl. 'gradTl.)

* Energy exchange between ions and electrons

dE,

dE.
iAo A

dt

* Alpha particle energy transfer in space in the multi-group
diffusion approximation

® Thermonuclear reaction kinetics

® Ionization and recombination kinetics
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Numerical simulation of experiments on laser facility ISKRA

TR =,

Fig. 16 presents the “illuminator”
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Minimum number of points on the target surface 250 x 250 ~ 6 -10*

Minimum number of points in radius 200
Minimum number of groups in photon energy and

_______ o 2:10°

Total number of arithmetic operations over all points that are required 4.4-10"
for computation of one timestep
Number of timesteps a— |
Required performance of the super -computer for computajion o HER, = 476, Tflopssp un
thermonuclear target implosion stage N (YosP$(-100 h per
@ — |20 compltatibe ) int |s
Required performance of the super -computer for full -scale computations
of laser thermonuclear facility dynamics > 100 Tflops
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Spherical chamber of ISKRA-5
facility
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