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STRATIGRAPHY AND GEOLOGIC STRUCTURE AT THE CHEMISTRY AND
: METALLURGY RESEARCH (CMR) BUILDING, TECHNICAL AREA 3,
LOS ALAMOS NATIONAL LABORATORY, NEW MEXICO

by

Donathon Krier, Florie Caporuscio, Jamie Gardner, and Alexis Lavine

ABSTRACT

Nine shallow (<70 ft), closely spaced core holes were continuously cored in the upper
units of the 1.22 Ma Tshirege Member of the Bandelier Tuff at Technical Area (TA)-3 of
the Los Alamos National Laboratory. The goal of the investigation was to identify faults
that may have potential for earthquake-induced surface rupture at the site of the Chemistry
and Metallurgy Research (CMR) building, a sensitive Laboratory facility that houses
nuclear materials research functions. The holes were located from 25 ft to 115 ft from
the building perimeter. Careful mapping of lithologic sequences in cores, supplemented
with focused sampling for geochemical analyses, yielded high confidence in the accuracy
of delineating buried contacts within the Tshirege Member. Geologic analysis and
investigation of the trends of surfaces interpolated from contacts in the core holes using
commercially available software helped infer minor faulting in the strata beneath the
building. Results show that gently north-northeast-dipping beds underlie the CMR
building. The tilted beds are fauited by two small, closely spaced, parailel reverse fauits
with a combined vertical separation of approximately 8 ft. The faults are inferred from
lithologically and geochemically repeated sections of core at about 55-ft depth in hole
SHB-CMR-6. The data from nearby core holes SHB-CMR-2 and SHB-CMR-3 permit
the extension of the fauits, albeit with decreasing separation, toward the southwest beneath
the CMR building. The fault trend is consistent with mapped lineaments from aerial
photography and with nearby mapped structure, but direct evidence of the faults’
orientations is lacking. No other faults were detected beneath the CMR buiiding by this
drilling and analysis method, which can detect faults with greater than about 2 ft

separation.

I. INTRODUCTION

Previous studies have shown that the major, potentially active fauits that may affect Los Alamos National
Laboratory (LANL) are the Pajarito, Rendija Canyon, and Guaje Mountain fauit zones (Figure 1a)
(Dransfield and Gardner, 1985; Gardner and House, 1987; Wong et al., 1995). These fauit zones are
commonly taken to constitute the Pajarito Fault System (e.g., Gardner and House, 1987), which defines
the local active boundary of deformation of the Rio Grande Rift, a major tectonic feature of the North
American continent (Gardner and Goff. 1984). How the faults of this system may physicaily connect
or kinemarically interact has important bearing on seismic hazards issues at Los Alamos but is subject
to debate and is the focus of ongoing studies. The southern end of the Rendija Canyon fault was
inferred to pass through or near Technical Area (TA)-55 by Wong et al. (1995); however, detailed work
by Gardner et al. (1998) showed that the otherwise north-south trending fault does not pass through



TA-55, but may instead pass through TA-3 as multiple southwest-trending splays. Additionally, aerial
photolineaments that may represent southwest-trending splays of the Rendija Canyon fault and kinematic
interactions with the Pajarito fault zone farther west appear to converge on TA-3. Building SM-29, the
Chemistry and Metallurgy Research (CMR) building, is located coincident with one of the southwest-
trending photolineaments and along the zone of other southwest-trending splays that may represent an
extension of the Rendija Canyon fault (Gardner, 1998, personal communication). The lineament is
located on the northern half of the CMR building footprint and trends southwest; hence, exploratory
core hole locations were concentrated on the southwest, northwest, and northeast areas around the

building.

.As part of the LANL Seismic Hazards Program, nine core holes were drilled around the perimeter of
the CMR building to obtain information on the presence or absence of near-surface fauits (Figure 1b).
This work is part of a broader program of geoscientific efforts that seek to quantify probabilistic seismic
hazards, including ground motion and surface rupture, at LANL. The objective of the drilling program
at the CMR building was to drill to intercept stratigraphic markers within the Bandelier Tuff and evaluate
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Figure la. Map showing the area of Los Alamos National Laboratory (shaded gray) and faults of the Pajarito
Fault System (thick lines with bar on downthrown side): PF = Pajarito Fault, RCF = Rendija Canyon Fault, GMF

= Guaje Mountain Fault.



any measurable stratigraphic separation (“offset”) between drill sites caused by faulting in the 1.22 Ma
Tshirege Member of the Bandelier Tuff (Izett and Obradovich, 1994). The statigraphic markers included
contacts between flow units and phenocryst-rich layers (surge beds) within the Tshirege Member.
Geologic cores removed from the holes were used to define and correlate the stratigraphic sequence at
each drillhole to aid in identifying geologic structures that might impact the building’s foundation and
structural stability in the future. In addition to risk posed by seismic ground motion, near-surface faults
may have the potential for surface rupture, which could affect the integrity of building foundations and

systems in the event of large earthquakes.
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Figure 1b. The upper map shows the outline of Los Alamos National Laboratory with Technical Areas (TA)
outlined in black. TA-3 is shaded gray. The lower map shows TA-3 and the locations of the core holes (black

dots) around the CMR building.



The core hole locations in relation to the outline of the CMR building are shown in Figure 1c. Core
hole de51gnat10ns and coordinates are listed in Table 1. Note that core hole SHB-CMR-9, located 200
ft west of SHB-CMR-7 and planned to be drilled last, was not drilled because of the small amount of
additional data expected from that location. The core holes were arrayed around the CMR building and
offset from exterior walls from 25 to 115 ft. Final locations were selected to avoid buried electrical
utilities, water pipelines, radioactive waste pipelines, and communication lines. Utilities were located
using as-built drawings, visual inspections, and induced radio-frequency detection (Metratech 810
detector). Radio-frequency detectors are typically used by municipalities for locating shallowly buried

utility lines.
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Figure lc. Map of the nine SHB-CMR core holes and selected buildings at TA-3.

II. METHODS

Drilling and coring operations took place from May 13 through May 21, 1998. The holes were augered
in 2.5-ft core lengths using a hollow-stem auger with a split-spoon barrel and wireline retrieval system
powered by a CME Model 750 drill rig. The core diameter was 3.5 inches. A total of 517.5 ft was
drilled in 7 days with 98% core recovery. Daily operations at the rig were supported by a crew of three
drillers, two geologists, a safety oversight professional, and a security escort. Each core was screened
before logging using a hand-held organic vapor analyzer and radiation monitors for alpha (Ludlum
Model 139) and beta-gamma (Eberline ESP-1) detection. None of the cores showed signs of organic
chemicals or radioactive contamination. The excellent core recovery is attributed to the drillers’
familiarity with the rock type, careful drilling with emphasis on core recovery, and a shallow target



Table 1. Coordinates for the nine CMR core holes. State Plane Coordinate System, New Mexico
Central Zone, 1983 North American Datum.

Ground

Core hole Northing (ft) Easting (ft) Elev. (ft)
SHB-CMR-1 1772678.60 1618571.21 7402.23
SHB-CMR-2 1772502.63 1618622.93 7399.77
SHB-CMR-3 1772403.05 1618671.66 7398.61
SHB-CMR-+4 1772262.73 1618683.58 7398.35
SHB-CMR-5 1772075.21 1618750.74 . 7397.46
SHB-CMR-6 1772823.24 1619258.44 7392.16
SHB-CMR-7 1772670.59 1619211.22 7394.91
SHB-CMR-8 1772450.24 1619307.99 7392.72
SHB-CMR-10 1772412.72 1619061.52 7398.41

depth (<70 ft) for each hole. Lithologic logs were prepared for each hole at the drill sites immediately
upon retrieval of the core and were supplemented with later detailed examination of key intervals at
LANL’s Environmental Restoration Project Field Support Facility where the cores are archived. Cores
were marked and boxed at the drill sites using a procedure designed by Goff (1986) as guidance. The
logs include descriptions of lithology, fractures, fracture fill, texture, and mineralogy, and the locations
of samples taken for chemical analyses. Although core recovery was excellent, the effects of driiling,
the often poor sample induration, and the consequences of handling reduced most nonwelded to partly
welded intervals of core to loose powder when transferred to archive boxes. Consequently, many
primary textures that were observable in the core barrel did not survive transfer to the core box.

Major and trace elements were analyzed for 64 bulk-rock samples using an automated Rigaku
wavelength-dispersive x-ray fluorescence (XRF) spectrometer. Samples were first crushed and
homogenized in 15- to 20-g portions in a tungsten-carbide shatterbox in accordance with Yucca Mountain
Project procedure LANL-EES-DP-130 — Geologic Sample Preparation. Sample splits were heated at
110°C for 4 h, and then allowed to equilibrate with ambient atmosphere for 12 h. One gram splits were
fused at 1100°C with 9 grams of lithium tetraborate flux to obtain the fusion disks. Additional one-
gram splits were heated at 1000°C to obtain the loss-on-ignition (LOI) measurements. Elemental
concentrations were calculated by comparing x-ray intensities for the samples to those for 21 standards
of known composition. A fundamental parameters program was used for matrix corrections (Criss,
1980). The XRF method employed calculates the concentrations of ten compounds (SiO,, TiO,, AL,O,,
Fe,O,, MnO, MgO, Ca0, Na,0, K,0, P,0;), ten minor elements (V, Cr, Ni, Zn, Rb, Sr, Y, Zr, Nb, Ba),
and LOIL As discussed below, the compositional data were used to confirm and (or) tighten control on
elevations of the geologic contacts between stratigraphic units of the Tshirege Member of the Bandelier

Tuff.
III. STRATIGRAPHY AND NOMENCLATURE

The stratigraphic units of the Bandelier Tuff used as markers in this drilling program are largely based
on those defined by Broxton and Reneau (1995), with the addition of a transitional Unit 3t (Broxton
and Gardner, 1998, personal communication), which was described by Warren et al. (1998) and
encountered in earlier drilling by the Seismic Hazards Program (Krier et al., 1998). The Bandelier Tuff
(Figure 2) is dominantly composed of a complex sequence of nonwelded to welded ignimbrites that
were erupted from the Valles-Toledo caldera complex (Griggs, 1964; Smith and Bailey, 1966; Smith et
al., 1970; Gardner et al., 1986). Beneath the Laboratory, the Bandelier Tuff consists of two members:
the lower Otowi Member (1.61 Ma) and the upper Tshirege Member (1.22 Ma) (Izett and Obradovich,
1994), separated by volcaniclastic rocks and tuffs of the Cerro Toledo interval (Smith et al., 1970;
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Heiken et al., 1986; Broxton and Rénéau, 1995, Lavine et al., 1997). At the drill site, the Tshirege
Member consists of at least four mappable units (Units 1 through 4). A thin wedge of clayey alluvium
and some construction fill overlie Unit 4 and form the surface deposits at the drill site, aithough Unit 4
outcrops at the surface just west of the CMR building. The nine core holes at the CMR building were
designed to penetrate Unit 4 and identify the contacts with underlying Units 3t and 3. Table 2 lists the

core holes, total depths, and contact depths and elevations resulting from the drilling and analysis.
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Figure 2. Composite stratigraphy of the Bandelier Tuff on the Pajarito Plateau, modified from Broxton and
Reneau (1995). At any given locality, units can pinch out or swell in thickness. Note the surge beds at various
unit boundaries and within Unit 4 and upper Unit 3. The SHB-CMR core holes penetrated Units 4, 3t, and 3
only.

IV. LITHOLOGIC DESCRIPTIONS

Field descriptions of the CMR cores were supplemented with binocular microscope examinations of
cores at the Field Support Facility. Except for differences in texture and induration because of variations
in welding (as qualitatively determined by degree of pumice flattening), the lithologic descriptions of
Units 3, 3t, and 4 are consistent from hole to hole. Specific characteristics of the degree of welding,
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stratigraphic assignments, and surge locations for each core hole are summarized in Figure 3. Color
references follow the descriptions shown in the Rock-Color Chart (Geological Society of America,
1980). The units are described below from oldest to youngest in stratigraphic position. No water-
producing intervals were encountered during this drilling, although moist-to-wet sediments and tuff

are present directly beneath landscaped areas.

Unit 3 Lithologic Description

Unit 3 consists of a nonwelded to moderately welded, pumice-poor, phenocryst-rich, devitrified
ignimbrite. During drilling operations, the entire thickness was not penetrated; rather, a short interval
(5.0 to 13.4 ft) of Unit 3 was penetrated and sampled to confirm the contact between Unit 3 and Unit 3t
by visual and geochemical means. This unit is nonwelded at the top but grades downward to moderately

welded rock over a short interval (5 to 10 ft).

Phenocrysts in Unit 3 are abundant at 25 to 35 volume percent (vol %), with quartz and sanidine in
subequal amounts and with lesser plagioclase. Phenocrysts are larger (averaging 4 mm) and from 30%
to 50% more abundant than in Unit 4. Whole quartz crystals are bipyramidal (characteristic of this
ignimbrite), approximately 4 mm on an edge, and make up 15 to 17 vol % of the tuff. However, more
than half the population of all crystal types consists of broken fragments. Sanidines are similar in size
(4 mm) and abundance (approximately 15 vol %), and exhibit a blue chatoyance in sunlight. The rare
and small (<1-mm) mafic phenocrysts comprise only | to 2 vol % of the tuff and are mostly biotite.

Pumices in the ignimbrite range from 4 to 7 vol % and are fully inflated toward the top of the unit,
exhibiting primary tube structures. With increasing welding, the tube structures are deformed and
flattened. All pumices are devitrified, and colors are primarily dark gray or light brown. The pumices

range in size from 5 mm to over 7 cm.

The matrix of Unit 3 is made up of devitrified glass shards, crystal fragments, and very small pumice
fragments. Matrix color ranges from pinkish gray to pale gray and the matrix makes up approximately
65 vol % of the ash flow. Lithics are rare and make up less than 1 vol % of the tuff,

Crystal-rich surge horizons are not widespread in our limited core from Unit 3, but three intercalated
surges are present in upper Unit 3 in core fiole SHB-CMR-10, one in core hole SHB-CMR-6, and
another thick Surg“e or surge-like deposit in Unit 3 is present in SHB-CMR-2. The beds are light gray
in color, medium-to-coarse grained, and massive-to-laminar bedded, loosely consolidated sands. In
SHB-CMR-10, the two lower surges (53.G 1o 33.7 ft and 54.7 to 55.0 ft) are distinct and separated by a
thin nonwelded tuff. The contacts of the upper surge (52.0 to 53.1 ft) are very gradational because of
fine ash being progressively depleted in the 2-to-3-ft interval located directly above and below the
surge. Hole SHB-CMR-2 contains an approximately 2-ft-thick surge bed at the top of Unit 3.

Unit 3t Lithologic Description

Unit 3t has three differences from Unit 3 that are readily observable in hand sample. The most obvious
variation is decreased phenocryst percentage, which was used as the major criterion in the field to
indicate the presence of Unit 3t. This unit has a phenocryst volume of 18% to 25%, transitional between
Units 3 (25% to 35%) and 4 (8% to 15%). The second difference is the degree of welding. Unit 3t is
often first encountered in the core as moderately to densely welded tuff. Even when the first Unit 3t
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material is observed to be nonwelded ash, it rapidly becomes welded over an interval of a few feet. The
final variation observed sporadically in Unit 3t is the presence of large, light gray flattened pumices.
These pumices can extend across the sampled core and mimic white banding in the tuff. The pumices
are both deformed and slightly altered. Unit 3t varies in thickness from 0.9 to 10.1 ft and average-s Sft

at the CMR site.

Crystal-rich surge beds, deplieted in fine ash, were identified at the base of Unit 3t in six core holes
(SHB-CMR-1, -2, -5, -7, -8, -10). These beds, primarily composed of sand-sized quartz and feldspar
crystals (60 to 95 vol %), range in thickness from 0.1 to 0.8 ft. The base of Unit 3t in SHB-CMR-5 is
marked only by a thin, horizontal sandy parting in the core.

Unit 4 Lithologic Description

Unit 4 is a nonwelded to densely welded, moderately pumice-rich, and phenocryst-poor to moderately
phenocryst-rich, devitrified ignimbrite. Both phenocrysts and pumice range from 8 to 15 vol %. Lithic
clasts are rare throughout the ash flow, typically representing less than 1 vol %. Color ranges from
grayish pink (5R’8/2) to pale red (SR 6/2) to moderate pink (SR 7/4).

The unit is nonwelded at the top, progresses in degree of welding to a moderately welded interval
(typically near 30-ft depth), and then becomes nonwelded tuff near the bottom. One core hole (SHB-
CMR-1) has a small, densely welded zone at a depth of approximately 20 to 21 ft.

Phenocrysts in Unit 4 are dominated by quartz and sanidine, with minor plagioclase and altered mafic
minerals. Whole quartz crystals are approximately 2 mm on edge, and make up 5 to 7 vol % of the tuff.
Feldspars are similar to quartz in size (2 to 3 mm) and abundance (approximately 5 vol %). The quartz
and feldspar phenocrysts of this unit have the same distinctive physical characteristics described for
Unit 3 (bipyramidal quartz, blue chatoyant sanidine). The rare and small (<1 mm) mafic phenocrysts

make up only I to 2 vol %.

Pumices in Unit 4 range in size from 5 mm to over 6 cm and display a variety of colors. All the pumices
are devitrified. Pumices in the upper portion of Unit 4 (beginning at 15 to 17 ft depth) are vapor-phase
altered, often deep brown or purple in color with gray cores, and are characterized by minute acicuiar
crystals growing within the tubes of the pumice. Binocular microscopy indicates that the primary
vapor phase aiteration minerals are cristobaiite and sanidine. Pumices in the nonwelded to slightly
welded portions of this unit are fully inflated and show littie or no deformation, but the primary pumice
textures are often obliterated by devitrification processes. In the central portion of the unit (approximately
25 to 35 ft depth), where welding is moderate, the pumices are significantly elongated and aligned
paraliel to bedding. Their color is either dark gray or orange pink, similar to the ash matrix. There isa
rhythmic banding in the lower portion of the unit (from a depth of 35 ft to the base of the unit) whose
cause is unknown. The bands consist of a moderate brown-colored aiteration of the tuffona | to2cm

scale alternating with the more typical orange-pink matrix.

Lithic fragments in Unit 4 are rare, typically less than 1 vol % of the tuff and less than 8-mm in
diameter. The lithic fragments are often altered to a powdery lime-green material surrounded by an
intense white alteration rim extending several millimeters into the enclosing tuff matrix. Despite a low
volume percentage, the lithic fragments arc present throughout Unit 4.
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The matrix of Unit 4 is composed of ash shards, small pumice fragments, and minute phenocryst
fragments. The prevalent colors of the matrix in Unit 4 are pinkish gray to orange pink to pale red. The
induration of the cores does not closely match the degree of welding. Some intervals displayed moderately
to densely welded core that was relatively friable and, in some instances, nonindurated. However,
much of the moderately to densely welded core samples were recovered as 2 to 5 cm-thick disks of
indurated core surrounded by rock powder in the core barrel, an effect resulting from drilling action.

A thin, crystal-rich, medium-to-coarse grained, unconsolidated sandy surge is present at the base of
Unit 4 in all nine core holes. In addition to the basal surge deposit, core holes SHB-CMR-2 and SHB-
CMR-3 contain 1 to 2 additional surges within the lower portion of Unit 4. Surge thicknesses vary
from 0.2 feet (SHB-CMR-1, SHB-CMR-4) to 2.2 feet (SHB-CMR-8). The surge intervals contain
60% to 90% crystals of quartz and sanidine with the remainder of the material being fine ash. The
samples of surge recovered in the core are massive-to-laminar bedded.

Post-Bandelier Tuff Sediments Lithologic Description

Overlying Unit 4 of the Bandelier Tuff is a thin layer of dark-colored alluvium and weathered tuff
fragments ranging in thickness from O ft to about 20 ft, averaging <1 ft thick in the core holes. The
alluvium forms a wedge that pinches out to the west. In several cores, particularly in SHB-CMR-10,
the “alluvium” consists of disturbed alluvium, construction fill, and tuff rubble, probably associated
with the original construction of the CMR building in 1952. In some core holes, thin, subhorizontal
(<I-inch) clay seams can be found within sand- and gravel-sized material. Where the alluvium is
thickest, it typically contains rubbilized, weathered pieces of Unit 4 tuff, and it is not always possible to
pinpoint the first appearance in the core of in situ Unit 4. Note that this fact has no bearing on the
present geological interpretation for the area because deeper contacts associated with Units 3t and 3
were used for geologic structure analysis. The limited thickness, lack of marker beds, and extensive
disturbance of the post-Bandelier alluvium make other near-surface geologic investigations of faulting

(e.g., trenching) impractical at the site.
g g) 1mp

V. GEOCHEMISTRY

Geochemical results from XRF analysis of core samples yield characteristic signatures for different
units of the Tshirege Member (Broxton and Gardner, personal communication; Warren et al., 1998).
Systematic variations in the amount of silica (Si0,), titanium (Ti0O,), and zircomum (Zr) correlate with
changes in lithologic character of the tuffs and can be used to differentiate and pinpoint contacts between
different flow units (Stimac et al., in preparation). Krier et al. (1998) used this information to locate
contacts between marker beds to within about 1 ft in drill cores taken for geological analysis at proposed
LANL building sites. This same analysis approach is used in the present study at the CMR site.

Table 3 lists the results of XRF analyses for samples from the SHB-CMR cores. Only elements and
compounds with results above their respective detection levels are listed. Empirically, Unit 3 titanium
contents are considered to be less than 0.15 wt% TiO,, Unit 3t titanium contents fall between 0.15 wt%
and 0.18 wt% TiO,, and Unit 4 titanium contents are >0.20 wt% TiO,. Similar divisions are assigned to
Zr contents; generally, Unit 3t has Zr content between about 250 ppm and 350 ppm. The Zr discriminator
is not compatible everywhere because holes SHB-CMR-5, SHB-CMR-6, and SHB-CMR-8 have Unit
4 samples with Zr contents of 336 ppm, 332 ppm, and 336 ppm, respectively. Nonetheless, there is
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consistency in the ranges of these signature analytes throughout the sequence of rocks within this part
of the Tshirege Member. Silica (SiO,) does not display as regular a distribution as the other analytes,
but clearly increases in abundance down-section from Unit 4 to Unit 3. Qur analyses average about
74.7 wt% Si0, in Unit 4, 75.7 wt% SiO, in Unit 3t, and 77.9 wt% SiO, in Unit 3.

Figures 4 through 12 compare XRF results for these three analytes, lithologic mapping (reflected as
welding character and surge intervals), and stratigraphic assignments for each of the nine core holes for
the depths of interest. ' There is a strong correlation between distinct chemical variations and the
occurrence of surge deposits, which often physically define the boundaries between the three different
- units. In each core, surge deposits at the base of Unit 4 and Unit 3t consistently mark stratigraphic
contacts as determined by distinct changes in lithologies in the cores and steep chemical trends in Si0,,
TiO,, and Zr. Two minor exceptions are: (1) SHB-CMR-4, which, lacking a surge deposit at the Unit 3t
base, nonetheless exhibits the characteristic increase in Si0, and decreases in TiO, and Zr at the Unit
3t/3 boundary, and (2) SHB-CMR-2, which has a surge deposit at the top of Unit 3 in addition to the
overlying surge at the base of Unit 3t. The consistency of the chemical variations and their relation to
lithologic changes in the cores yield high accuracy in assigning elevations to significant contacts.

In SHB-CMR-10, five surge deposits were described in the interval from 42 ft to 60 ft. The upper two
surges define the bases of Unit4 and Unit 3¢, but the lower three surges occur within and toward the top
of Unit 3 tuff. The sample at 54.0 ft, located immediately above the deep surge in Unit 3, exhibits SiO,
(76.6 wt%) and Zr (243 ppm) contents somewhat ambiguous with respect to Unit 3 assignment. The
sample’s TiQ, content (0.135 wt%) 1s the criterion empioyed here to assign this sample to Unit 3 and
maintain the Unit 3t/3 contact relatively higher in the core hole. Although Unit 4 tuff is known to
contain additional thin surge deposits above its basal contact in outcrops near TA-3, none were observed

in these cores.

Analytical results from core hole SHB-CMR-6 show the expected trends in SiO,, TiO,, and Zr through
the intervals of interest, but exhibit a reversal in chemical trends toward the bottom of the hole (Figure
9). The compositions of these deeper samples resemble the signatures of overlying rocks in.several
details. In previous drilling at TA-3, a plot of Ba and TiO, was shown to strongly differentiate among
Units 3, 3t, and 4 (Krier et al., 1998). Figure 13 shows the same differentiation using resuits for Ba and
Zr analyses for SHB-CMR-6. Although Ba shows less consistent variation with stratigraphic position
than Zr in both this and the previous study (partly because of the relatively large uncertainties in analysis
by XRF), the plot indicates that Unit 3t chemistry may be present in the interval from 47.5 to 50.7 ft as
well as below 55.0 ft. Indeed, detailed mupping of the core shows repeated sections of distinct lithologic
character in the intervals from 52.5 to 53.2 ft and 55.0 to 57.5 ft (the total depth of hole), that is,
evidence of a repeated intervals of Unit 3 and Unit 3t. As discussed in the next section, these data
indicate that two reverse faults cut the SHB-CMR-6 core hole.

VI. GEOLOGIC STRUCTURE

We have analyzed the three-dimensional positions of correlated stratigraphic markers among the core
holes to evaluate the possibility of vertical offsets caused by faulting beneath the CMR building. A
computer-generated, three-dimensional surface model of the top of Unit 3 and intercore hole cross

sections define our interpretation of all data presented.

12
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_ All SHB-CMR Samples
Solid circies are SHB-CMR-6 samples with depths marked in feet.
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Figure 13. Zr-Ba plot for SHB-CMR samples, with SHB-CMR-6 samples labeled by depth in feet.

A model of the upper surface of Unit 3 was constructed using Surfer-32 software to help visualize the
data and the potential for faults in the area of the CMR core holes. The nine core hole locations and
elevations of the surface of Unit 3 (Table 2) were used as input. The program uses kriging to interpoiate
the surface among control points and creztes a model of the morphology and attitude of this contact.
Figure 14 shows 1-ft contours on the top of the modeled surface of Unit 3. The modeled surface of Unit
3 has an overall strike of approximately N70°W. The dip of this surface is about 1.2° NE in the
southwestern portion of the area and sieepens to 1.5° NE in the northeast area. The surface increases
dip to >2.5° near hole SHB-CMR-6, reflecting the elevation of the faulted contacts observed in SHB-
CMR-6 (Section V). Other areas around the CMR building show no evidence of faults disturbing the

Unit 3 surface morphology.

Figure 15 displays a detailed solution to the repeated lithologic sequences in hole SHB-CMR-6. Two
closely spaced reverse faults cut the core hole to juxtapose Unit 3 against the younger Unit 3t in two
places. The combined vertical separation (throw) on these two fauits is about 8 ft. Because no fault
surfaces. breccias. gouge. alteration. etc., were preserved in the core, the faults are inferred to exist
rather than being directly observed. The faults” strikes and dips are not available from the unoriented
core. An 80° SE dip is arbitrarily assigned to both faults, and the strikes are assumed to be parallel to

-each other and to observed air-photolineaments through the region. The resulting strike of the reverse
faults is approximately N70°E - S70°W, with a dip of 80°SE.
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Figure 16 displays two cross sections drawn through the CMR area. The two faults are illustrated in the
figure as a single fault plane for clarity. Figure 16(a) depicts the faults cutting SHB-CMR-6, and
Figure 16(b) shows the same faults extending to the southwest to cut Unit 3t between core holes SHB-
CMR-2 and SHB-CMR-3. The projection is based on the assigned photolineament orientation as
described above. The elevations of the Unit 3 contacts in core holes SHB-CMR-2 and SHB-CMR-3
permit the extension of the faults with about 2 ft throw at this locality, but there is no direct evidence of
fault extension to this point. There is no other evidence of additional faults beneath the CMR site.

VII. UNCERTAINTY ESTIMATE

Estimates of uncertainties that could affect this study are qualitative, but their consideration reveals
that the sources of errors potentially affecting the results are limited. One source of error in depth

1772900
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Figure 14. Contour map showing the top surface of Unit 3 in SHB-CMR core holes, as modeled by Surfer 32
software using kriging to interpolate the surface between control points (core holes). The grid is in the State
Plane Coordinate System, New Mexico Central Zone, 1983 North American Datum (in feet). The contour
intervalis | ft. The slope of the surface is to the north-northeast. Lines are for the cross sections shown in Figure

16.
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Figure 15. Interpretation of relations observed in core hole SHB-CMR-6 from 45 ft to 57.5 ft (total depths).
Two inferred high-angle reverse faults account for the repetition of Unit 3 and Unit 3t lithologic intervals. Fault
A has a vertical separation of about 2.5 ft; Fault B has a vertical separation of about 5.5 ft. The total separation
is 8 ft. The contacts below the bottom of the core hole are geologically inferred. Astericks mark the locations of

samples for XRF analysis listed in Table 3.
v

determination is the borehole deviating from the vertical during drilling. The careful drilling and
relatively shallow hole depth ensured that each core hole remained at or near its original vertical orien-
tation, hence minimizing this error. The depth intervals from which cores are retrieved during drilling
are well known because the number of augers in the ground give an unambiguous measurement of the
length of tools in the hole. The coring operation yielded 98% core retrieval, which is excellent recov-
ery in this relatively soft tuff. There are very few “lost” intervals of core. Lithologic logging of this
nearly total record makes the mapping unusually complete for this type of investigation. Mapping
lithologic types and checking and refining contacts against focused geochemical sampling yield con-

tact elevations accurate to <1 ft in most cases.

Use of a surface-modeling approach with a relatively small data set to infer buried faults is limited by
interpretation of changes in dip and strike of marker beds and is mostly grounded in professional
judgement. However, core hole SHB-CMR-6 contains physical evidence for faults with a total of § ft
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Figure 16. Geologic cross-sections for the lines of section shown on Figure 15. The view is looking east. The
two reverse faults cutting SHB-CMR-6 are shown as a single fault for clarity. The faults in SHB-CMR-6 (Figure
16a) are assumed to extend to between SHB-CMR-2 and SHB-CMR-3 (Figure 16b), where the mapped contacts
permit up to 2 ft of vertical separation along the fault.

of throw and supports the conclusion that the model is depicting geologic structure rather than a change
in dip caused by some depositional process. Also considered were drilling practices or mistakes (for
exampie, hole sloughing or redrilling an interval) that could result in repeated lithologic intervals that
are not related to structure in core hole SHB-CMR-6. However, the continuous drilling of the core hole
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with hollow-stem augers (no pulling out or backing up) eliminated sloughing or redrilling of tuff that
could be incorporated into the core barrel. Similarly, mistakenly reversing which end of the core barrel
is “down” during handling in the field does not account for the repeated sections described for this

hole.

Southwestward extension of the faults to the region between core holes SHB-CMR-2 and SHB-CMR-
3 allows for no more than about 2-ft offset at this locality. This-is constrained by the trend of the Unit
3t/3 contact along the line of westernmost holes. This amount is the same as our estimate of the

smallest fault that this method can detect.

The final uncertainties involve the assumptions of fault dip (80° SE) and strike (N70°E - S70°W). The
steep dip is consistent with the great majority of joints and faults observed within the Bandelier Tuff on
the Pajarito Plateau (for example, Vaniman and Chipera, 1995; Wohletz, 1995). The fault strike is
consistent with faults mapped nearby by Gardner et al. (1998) and with lineaments observed on early
air-photos of the CMR site. These circumstances provide reasonable constraints on the faults’ probable
orientation, given the lack of any orientation directly observed in the cores.

VIIL. CONCLUSIONS

Two small faults are present in the subsurface near the northern edge of the CMR building at TA-3,
LANL. These reverse faults, detected in one core hole, have a combined vertical separation of about 8
ft. When considered with the marker beds observed in the other core holes, the data allow for extension
of the fault toward the southwest beneath the CMR building to the area between holes SHB-CMR-2
and SHB-CMR-3, where no more than 2 ft of throw can be accommodated. No other faults were

detected or inferred to exist beneath the CMR building.

The faults in SHB-CMR-6 are probably related to the southern extension of the Rendija Canyon fault
zone. The north-south trending Rendija Canyon fault has been shown by Gardner et al. (1998) to
change style and orientation to smaller southwest-northeast trending fault splays with decreasing offset
toward the southwest. Diminishing displacement along the fault and lack of any geomorphological
expression indicate that the fault is dying (i.e., diminishing to zero offset) toward the southwest, at least
in the 1.22-Ma-old, near-surface rocks of the Tshirege Member of the Bandelier Tuff. Similar reverse
faults and other normal faults associated with the Rendija Canyon fault have been mapped in exposures
at the Los Alamos County landfill, although it is doubtful that any of these faults are continuous with
those in hole SHB-CMR-6, Other subsurface faults couid be undetected in the vicinity of the CMR
building, but the data constrain the throw on such faults to <2 ft for the zone beneath the building.

The CMR drilling results provide a bound for probabalistic seismic hazard analysis of potential surface
rupture at TA-3 and beneath the CMR building (Olig et al., 1998). The small reverse faults, although a
possible extension of the Rendija Canyon fault zone, have an opposite sense of displacement to the
main trace of the Rendija Canyon fault further north. They are examples of distributed or subsidiary
fault splays related to the southwestern terminus of the Rendija Canyon fauit, a fault that has as much
as an order of magnitude more displacement on Bandelier Tuff in northern Los Alamos County.
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