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Abstract

Analysis of the Anti-Submarine Penetrator aerothermodynamic environment showed
that the surface pressure transducers mounted in the vehicle case required thermal pro-
tection. Recessing the transducers below the case surface and covering them with a
0.050-in. layer of RTV compound provided sufficient thermal protection but reduced
transducer {requency response and repeatability. Mounting the transducers at the bot-
tom of open cavities below the vehicle surface also proved unacceptable. The large
cavity depth to cavity diameter ratio required to sufficiently lower heat transfer to the
tranducer, a value of about 26, unacceptably reduced transducer frequency response.
The final solution consisted of filling the open cavity, having a depth of 0.070 in. and
a diameter of 0.050 in., with a viscous silicone oil. The incompressible silicone oil
does not significantly affect frequency response and insulates the transducer from the
{reestream environment. '

[\






Contents

B

Introduction

ASP Vehicle Description

Vehicle Trajectory

Pressure Instrumentation

Aerodynamic Heating Analysis -

Indepth Conduction Analysis

6.1 Vehicle Case Conduction Analysis . . . . ... .. .. ... .......
6.2 Pressure Transducer Conduction Analysis . .. .. ... ... ......
6.3 Subsurface Cavity Mounted Transducers . . . . . . ... ... ......
6.4 Silicone Oil Filled Cavity . . . . . . . . . ... oo

6.5 Transducer Sensitivity to Transverse Temperature Gradients . . .. . .
Heat Transfer to the Bottom of a Cavity

Conclusion

References

Vehicle Trajectory

A.1 Computed Atmospheric Trajectory . . . . . . ... ... ... .. .... .

A.2 Trajectory After Water Entry . . . . . .. . . . .. ... ... .. ...,

Gap Heating Data Derived From Reference 11

List of Figures

1 ASP Vehicle . . . . . . . e
2 ASP Atmospheric Trajectory . . . . . . . ... .. o
3 ASP Trajectory After Water Entry . . . . . . . . . .. . ... .. ..., '
4 Computed ASP Heat Transfer Rates . . . . . . . . .. ... ... ....
5 Computed ASP Heat Transfer Rates at the 27.33-in. Station After Water

Entry ... ... . ... e P
Predicted ASP Case Temperatures at the 27.33-in. Station . .. .. ..
7 Predicted ASP Case Temperatures at the 27.33-in. Station After Water
Entry . .. ... L e e e e e e e e e

10
11

11
13
15
17
18
18

21
24
25
26
27
29

30



11

12

13

Thermal Model and Predicted Pressure Transducer Temperature for the
Transducer Mounted Flush With the Vehicle Surface . . . . . . ... ..
Cavity Mounted Pressure Transducer Configuration . .. ... ... ..
Nestler, Saydah, and Auxer Gap Bottom Heating Correlation Plotted
for End of Trajectory Conditions at the 27.33-in. Station . .. ... ..
Thermal Model and Predicted Pressure Transducer Temperature Be-
neath a Cavity Filled with Silicone Oil . . . . . ... .. ... ......
Thermal Model and Predicted Pressure Transducer Temperature Be-
neath a Duroid Washer . . . .. ... ... ... .. ... ... .....



Nomenclature

H cavity depth

kg thermal conductivity of air along the cavity dividing streamline

k. thermal conductivity of air at the vehicle surface

L cavity diameter or length

M, boundary layer edge Mach number

q compressible heat flux to flat plate

g heat flux to the bottom of a cavity

q. heat flux crossing the dividing streamline into a cavity

9: incompressible heat flux to a flat plate

g: heat flux to the surface if the cavity were not present

Re. Reynolds number based on surface streamlength from the vehicle
nosetip and boundary layer edge properties

T temperature (deg R) :

Uy velocity along the cavity dividing streamline

Greek Symbols

6 boundary layer thickness

6 boundary layer displacement thickness

Ha viscosity of air along the dividing streamline
¢ variable defined by Equation 3

o turbulent shear layer spread parameter
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1 Introduction

The purpose of the Anti-Submarine Penetrator (ASP) Program is to develop a
weapon capable of Arctic ice penetration or water entry without broaching. The test
program for the RAP-200 series vehicle includes three instrumented fiights from Kauai
with a water entry. The instrumentation for these flights includes eight transducers
which measure surface pressures after the water entry. The relatively low aerothermo-
dynamic heating experienced by the vehicle poses no threat to the structural integrity
of the vehicle. The pressure transducers, however, are only temperature compensated
over a maximum range of 250deg R. Since the water at depth is at a temperature
of 520deg R, the transducer temperature can not exceed 770 deg R without exceeding
the compensation range‘. At the point in the trajectory where the vehicle reaches an
altitude of 5177 ft and a Mach number of 2.37 the boundary layer recovery temperature
1s 973 deg R. Because of their Jow thermal capacity and isolation from the vehicle case,
the temperature of pressure transducers mounted flush with the vehicle surface will be
close to the boundary layer recovery temperature. This report discusses the analysis of
the transducer aerothermal environment and the design of a thermal protection system
to insulate the transducers from excessive heating.

2 ASP Vehicle Description

Figure 1 shows the ASP external configuration. The vehicle is a 64.92-in. ]ong_
tangent ogive-cone with a 14.7-in. diameter base. The 20-caliber, 294-in. radius, ogive
forebody is 32.32 in. long and begins with an approximately 0.10-in. radius spherical
nose. At the 32.32-in. station, where the body diameter is 9.25 in., the ogive is tangent
to a 4.78-degree half-angle conical frustum. The vehicle case is 0.25-in. thick 4340 steel
and the forcbody contains a tungsten alloy ballast. Overall weight of the vehicle is 770
Ibs.

64.92 in.

29.72 in. 60.98 in.
h

Ogive Virtua! Origin Tangent Point

4 —0.52 in. 27.33 in. L i / 32.32 in.

{/o.oo in. |

-

it

294.0-in. Radius Ogive

B
S N
5

\ 0.10-in. Nose Radius

n

Figure 1: ASP Vehicle



3 Vehicle Trajectory

The ASP trajectory contains both an atmospheric portion and an underwater por-
tion following water entry. Although the only significant heating occurs in the atmo-
sphere, the underwater portion of the trajectory is included in the thermal analysis to
estimate the rate at which the vehicle cools after water entry. Appendix A contains a
listing of the computed atmospheric trajectory and the trajectory after water entry.

Figure 2 shows the atmospheric trajectory used for the heating analysis. The tra-
jectory consists of powered flight for the first 3.5 seconds to a Mach number of 1.61 and
an altitude of 1448 ft, followed by a ballistic cruise to an apogee at Mach 0.89 and an
altitude of 6851 ft at 20.3 seconds. At 26.7 seconds into the flight, at Mach 0.85 and
an altitude of 6200 ft, the second stage rocket burns for 2 seconds and accelerates the
vehicle to Mach 2.37 at an altitude of 5177 ft. The final plunge into the water occurs
at 36.7 seconds and a Mach number of 1.8.
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Figure 2: ASP Atmospheric Trajectory

Figure 3 shows the underwater trajectory of the vehicle after water entry at 2012
ft/sec. This trajectory represents a worst case scenario in that the vehicle’s maximum
water entry velocity is approximately 2000 ft /sec. After 1 second the vehicle has slowed
to 105 fi/sec and reached a depth of 243 ft. After 6.8 seconds the vehicle has slowed
Lo 45 ft /sec and reached the recovery svstem deployvment depth of 500 ft. The water
temperature varied from 542deg R atl the surface to 531 deg R at a depth of 500 ft.
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Figure 3: ASP Trajectory After Water Entry

4 Pressure Instrumentation

Transducer locations are measured along the vehicle axis from the nosetip. One
pressure transducer is mounted at each of the axial locations 27.33 in. and 29.72 in.
Four pressure transducers are mounted 60.98 in. from the vehicle nosetip. The remain-
ing two transducers are mounted on the base of the vehicle. The transducer located at
27.33 in., where the surface pressure coefficient is unity when the vehicle is submerged,
measures water depth pressure to obtain an independent depth measurement. The
other seven transducers measure the low pressures existing in the cavities formed on
the vehicle surface immediately after water entry. These cavities collapse quickly and
the pressure transducer readings will then go off scale.

The pressure transducer assembly is 0.140 in. in diameter and 0.155 in. Jong. The
sensing element of the depth pressure transducer consists of a thin silicon wafer 0.0017
in. thick. The other transducer sensing elements are 0.00045 in. thick silicon wafers.
The sensing elements of all the transducers are covered by 0.010 in. of RTV topped with
a 0.005-in. stainless steel screen exposed to the freestream pressure. Properties of RTV
used in this analysis are those of Dow Corning 3145. The screen is assumed to have
509 porosity with the pores in the screen filled with RTV. Filling the screen pores
with RTV eliminates the possibility of roughness augmented heating. The thermal

properties of the screen are taken as the average of those of RTV and 304 stainless
steel.
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5 Aerodynamic Heating Analysis

The LOVEL low velocity aeroheating program {10} was used to predict the heating
environment experienced by the vehicle. This program is useful for predicting heat
transfer rates on vehicles at Mach numbers less than 6. The code predicts heating
on simple shapes such as flat plates, sharp cones and sharp wedges, and sphere-cones
and cylinder-wedges. It makes use of empirical heat transfer correlations, based on
the distance from the vehicle nosetip, to calculate coldwall heat transfer rates. The
coldwall heat transfer rate is referenced to an arbitrary wall temperature of 536 deg R.

To calculate the ASP aerodynamic heating, the vehicle was treated as two distinct
sphere-cones. A tangent line to the ASP surface at the 27.33-ir. station forms an angle
of 5.7 degrees with the vehicle centerline. The forward section, therefore, was treated
as a sphere-cone with body half-angle of 5.7 degrees. The rear station was treated as a
sphere-cone with body half-angle of 4.7 degrees. Heat transfer calculations were made
at the 27.33-in. and the 60.98-in. stations. Heating at the 29.72-in. station will be
slightly less than heating at the 27.33-in. station. Turbulent flow was assumed for all of
the calculations. The Reynolds number, based on streamwise distance from the nosetip
and boundary layer edge properties, at the 27.33-in. station and the end of the vehicle
trajectory is 30 million, well within the regime where turbulent flow is expected.

Figures 4 shows the predicted coldwall heat transfer rates at the vehicle nosetip,
27.33-in. station, and 60.98-in. station. The heating is highest at the nosetip and
decreases as distance from the nosetip increases. Experimental results show that reentry
vehicle base heating in hypersonic flow is an order of magnitude lower than side wall
heating [4]. Although these results can not be extrapolated to the low supersonic Mach
numbers of the ASP experiment, the base should see significantly lower heat transfer
rates than the vehicle side wall.

To calculate the rate at which the vehicle cools upon entering the water, the NEP-
TUNE program was written using the sharp cone heat transfer relationships employed
by LOVEL but with water properties. The program took advantage of the fact that
at the 27.33-in. station the boundary layer edge pressure is the same as the freestream
~ pressurc after water entry. The boundary layer edge velocity, therefore, is the same as
the freestream velocity. Figure 5 shows a plot of the coldwall heat transfer rate for the
underwater portion of the trajectory at the 27.33-in. station.

6 Indepth Conduction Analysis

All of the conduction analysis was performed on one-dimensional models even when
the nature of the problem justified a two-dimensional model. The one-dimensional so-
lution always bracketed the effects of interest. The Charring Material Ablation (CMA)
computer program .3 was used with heating input from LOVEL and NEPTUNE to
calculate a one-dimensional indepth conduction solution. The CMA program uses a
surface energy balance to couple the coldwall convective heat transfer prediction to the

11
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Figure 4: Computed ASP Heat Transfer Rates
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6.3 Subsurface Cavity Mounted Transducers

-To shield the transducers from the freestream environment, mounting the transduc-
ers in cavities below the vehicle surface, as shown in Figure 9, was investigated. An
analysis with CMA showed that the heat transfer rate to the pressure transducer, g,
must be lowered by a factor of 20 relative to the heat transfer rate to a pressure trans-
ducer mounted on the vehicle surface at the same position, g.. Because the 0.25-in. case
thickness limits the cavity depth to 0.070 in., the problem became one of choosing the
cavity diameter to insure a low heat transfer rate at the cavity bottom. The minimum
ASP transducer cavity diameter is 0.050 in. Smaller diameters yield a cavity diameter
to depth ratio, L /H, small enough to significantly attenuate the transducer frequency
response.

freestream
r=— 0.050 in.

Rogers | Silcone Oil Rogers

Duroid or Duroid

5880 Air 5880
4340 . 4340
Steel 0.070 in. Steel

i

0.005 in. Screen

0.010 in. Silicone Oif or RTV
A— N

Pyrex Glass “Silicon

Figure 9: Cavity Mounted Pressure Transducer Configuration

Figure 10 shows ¢, /q. from a correlation developed by Nestler, Saydah, and Auxer
|8 plotted versus H/L for conditions in the ASP vehicle boundary layer at the end of the
air trajectory at the 27.33-in. station. Heat transfer to the bottom of cavities and the
correlation plotted in Figure 10, are discussed more thoroughly later. Assuming that
the correlation holds. Figure 10 shows that H/L = 26 is required to obtain ¢,/g. = 0.05.
The maximum cavity depth of 0.070 in. and minimum cavity diameter of 0.050 in., or
H/L = 1.4, vields ¢, /g. = 0.68. Transducer cavity depth limitations prevent use of this
technique to protect the pressure transducers.

17



1.0

0.0 5.0 16.0 15.0 20.0 25.0 30.0

H/L

Figure 10: Nestler, Saydah. and Auxer Gap Bottom Heating Corre]atlon Plotted for
End of Trajectory Conditions at the 27.33-in. Station

6.4 Silicone Oil Filled Cavity

To overcome the limitations on the transducer cavity depth, the cavity will be
filled with a viscous, essentially incompressible, silicone oil. This technique thermally
insulates the pressure transducer and prevents any frequency response loss caused by
the cavity. Because silicone oil causes RTV swelling, no RTV can be used in the
transducer assembly. Therefore, the 0.010 in. of RTV seen in Figure 9 is replaced by
silicone oil. Figure 11 shows the thermal mode] of the pressure transducer mounted
below 0.071 in. of silicone oil and the results of the CMA conduction calculations.
The transducer sees a maximum temperature of 636 deg R, well within the acceptable
lemperature range.

6.5 Transducer Sensitivity to Transverse Temperature
Gradients

In addition to an absolute temperature sensitivity, the transducers also exhibit a
sensitivity to transverse temperature gradients. To evaluate the magnitude of this ef-
fect, two one-dimensional temperature distributions are compared. Figure 12 shows the
thermal model and temperature distribution through the Rogers Duroid 5880 insulator
and the transducer assembly. The silicon wafer reaches a temperature of 587 deg R

18
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beneath the insulating washer. As shown earlier in Figure 11 , the silicon wafer reaches
a temperature of 636 deg R beneath the cavity filled with silicone oil. The diflerence
between these temperatures sets an upper bound of 49deg R on the temperature dif-
ference between the center of the silicon wafer and the edge of the wafer. In reality,
two-dimensional heat transfer eflects will reduce this difference. '

7 Heat Transfer to the Bottom of a Cavity

Very few experimental measurements of heat transfer to the bottom of a cavity
and only crude theoretical analyses of the problem exist. The heat transfer to the
bottom of a cavity depends on the state of the boundary layer, either laminar or
turbulent, the cavity length in the flow direction, L, the cavity depth, H, boundary
layer edge conditions, and any interaction between these variables. In addition, most
previous research concentrated on understanding and quantifying the increase in heat
transfer rates caused by reattachment of a cavity free shear layer rather than the
attenuation of heat transfer at the bottom of a cavity. References [1,2,7] review the
available literature on heat transfer in separated flows. Most investigators studied
two-dimensional channels or rectangular notches. In order to estimate the cavity size
needed to protect the ASP pressure tranducers, two-dimensional results are used to
estimate the heat transfer at the bottom of a round hole. In [5], Nestler justified a
two-dimensional analysis of measurements taken in round holes as representative of a
slice through the middle of the holes.

The literature makes the distinction between a cavity and a gap. A cavity is large
in the flow direction relative to the boundary layer thickness of the external flow. The
ratio of cavity length to boundary layer thickness, L/é, is much greater than 1. This
feature allows simpler experimental setups because the apparatus can be of reasonable
size. On the other hand, a gap has a value of L/6 less than or equal to 1. Not only
does this complicate any theoretical analysis, it also means that the dimensions of any
experimental investigation must be small and measurement uncertainty large. As noted
before, the minimum ASP cavity diameter is 0.050 in. The GE reentry vehicle heating
program |9; predicts a turbulent boundary layer thickness of 0.164 in. at the 27.33-in.
station for a freestreamn Mach number of 1.8 and an altitude of 0.0 ft. This yields a
L/é ratio of 0.30. The ASP cavity, therefore, falls in the gap regime.

Most theoretical analyses or correlations of heat transfer to cavities and gaps, under
either laminar or turbulent boundary layers, begin with calculation of the heat addition
to the recirculating region. The heat addition is given by:

1 rL T Ju
= — kj— 4+ u —id 1
q. L/o [ day ud#day} z ( )
where

ks = thermal conductivity of air along the dividing streamline
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the measured heat flux ratios on the upstream and downstream sides of the gaps at a
given depth could be averaged to obtain the equivalent heat flux ratio to the bottom
of a gap with the same depth. Appendix B contains the data points obtained in this
manner.

In Reference [8], Nestler, Saydah, and Auxer measured the heat transfer along the
walls and bottoms of cavities and gaps under a turbulent boundary layer. They also
developed a correlation of the heat transfer to the bottom of both cavities and gaps
using the data presented in the paper and other experimental data.

R 0.2
% = 1.88 e =1.880 (3)
ge (1+28) (1+ 52 M2) L0
where
e, = Reynolds number based on boundary layer edge conditions

and distance from the leading edge of the flat plate.
M, = boundary layer edge Mach number

f = ratio of compressible to incompressible heat flux on a flat
plate

o = turbulent shear layer spread parameter, assumed to vary
linearly from a value of 12 at M = 0, to 16 at M = 2 and -
constant thereafter, [6].

Nestler et al. developed the correlation by deriving a relationship for ¢./g. assuming
the growth of an asymptotic turbulent free shear layer over the cavity. That analysis
produced

qe N Reei

¢~ (1+233M2) Lo
They then assumed that the heat flux to the bottom of the recirculating region is
proportional to the average heat flux to the walls of the recirculating region.

L 1
L2015 24
Note that the development of the correlation does not apply to gaps because of the
assumption of an asymptotic turbulent free layer growing over the cavity. Note also
that the cavity or gap length has no eflect on the ¢./g. ratio. As mentioned before,
g./g. should go to 1 as the recirculating region length goes to 0.

Figure 13 shows the correlation plotted with the two experimental gap data points
from Reference 18 and four points derived from Reference [11]. In Reference [11].
Weinstein et al. did not give sufficient information to allow calculation of the boundary
layer edge conditions when the flat plate model was positioned at an angle of attack.
The four points plotted in Figure 13 correspond to the 0.0 degree angle of attack
condition. The figure shows that the correlation, developed for cavities, does not do
well in the gap regime. The correlation does, however, split the data.

(4)

(5)

gy =~ g,



10°

Equation 3

%)
- H/A = 2.
{ o ./L 2.83
o 7 o
o ) Re><_:7-9E+6 3.47 & Weinstein, Avery, Chapman — Run 7
M =6.3 . Mg = 6.9
7 a/q; = 0.69
7 Re, = 4.05E+6
. o = 16.0
B Nestler, Saydah, Auxer
Tre.=7.15+6 /L =60
e,=7.1E+ -
o |MZes o =16.0
iO .
= : T ‘ ; S mas s
10 10" 10
¢

Figure 13: Nestler, Saydah, and Auxer Gap Bottom Heating Correlation

8 Conclusion

Although the aerothermal environment experienced by the ASP vehicle is mild by
comparison with reentry vehicle environments, the fragile construction of the surface
pressure transducers nevertheless required that they be insulated from that environ-
ment. A proposal to cover the transducers with RTV proved unacceptable because the
required thick laver of RTV destroyed transducer frequency response and repeatabil-
ity. Recessing the transducer below the surface also failed to provide a solution to the
thermal protection problem because the required cavity depth to diameter ratio would
again destroy transducer frequency response. The solution to the problem was found
by recessing the pressure transducer below the surface in a shallow cavity and filling
the cavity with a viscous, incompressible, silicone oil.
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Trajectory After Water Entry

Time
(sec)

0.0000E+00
0.1000E+-00
0.2000E+-00
0.3000E+00
0.4000E+00
0.5000E+00
0.6000E+00
0.7000E--00
0.8000E-+-00
0.9000E+00
0.1000E-+01
0.1200E-+01
0.1400E-+-01
0.1600E+01
0.1800E+01
0.2000E+01
0.4000E+01
0.6000E+01
0.8000E+-01
0.1000E-+02
0.1200E+02

Velocity
(ft/sec)

0.2012E+04
0.1405E+04
0.1100E+04
0.8850E+03
0.7100E+03
0.5700E+03
0.4600E+03
0.3600E-+03
0.2700E+03
0.1850E+03
0.1050E+03
0.8500E+02
0.6500E+02
0.5250E+02
0.4750E+02
0.4600E+02
0.4600E-+02
0.4600E-+02
0.4500E+02
0.4400E-+02
0.4400E-+02

Depth
(1)

0.0000E+00
0.6000E+02
0.1060E-+03
0.1390E+03
0.1680E+03
0.1890E+03
0.2070E+03
0.2230E+03
0.2340E+03
0.2380E+03
0.2430E+03
0.2520E+03
0.2610E+03
0.2700E+03
0.2790E+03
0.2880E+03
0.3770E+03
0.4660E+03
0.5540E+03
0.6430E+03
0.7320E+03

29

Temperature
(deg E)

0.5417E+03
0.5410E+03
0.5404E+03
0.5397E403
0.5391E+03
0.5387E+03
0.5383E+03
0.5380E+03
0.5377E+03
0.5376E+03
0.5375E+03
0.5373E+03
0.5371E+03
0.5369E+03
0.5367E+03
0.5365E+03
0.5340E+03
0.5314E+03
0.5285E+03
0.5256E+03
0.5225E+03
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Gap Heatihg Data Derived From Reference 11

Ran & L B[] [e] [&]

(cm) (cm) (cm) arp aFrr FP

8 0.81 0.18 0.353 0.500 0.199 0.350
0.510 0.292 0.160 0.226
0.625 0.172 0.116 0.144
0.750 0.097 0.094 0.096
6 1.17 0.18 0.510 0.171 0.115 0.143
0.625 0.113 0.085 0.099
0.750- 0.066  0.063 0.065
5 1.17 .0.30 0.510 0.276 0.275 0.275
0.625 0.185 0.238 0.212
0.750 0.111 0.212 ., 0.162
0.850 0.052  0.206 0.129
4 1.17 0.41 0.510 0.312 0.263 0.288
0.625 0.229  0.222 0.226
0.750 0.137 0.196 0.167
1.162 0.000 0.153 0.077
7 1.62 0.18 0.510 0.148 0.064 0.106
0.625 0.093 0.040 0.067
0.706  0.061 0.028 0.045
0.750 0.048 0.022 0.035

where
D = quantity measured on the downstream cavity wall
U = quantity measured on the upstream cavity wall

avg = average of the upstream and downstream wall values
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Distribution

1510
1520
1530
1540
1550
1551
1552
1553
1553
1554
1555
1556
3141
3151
8024
8150
8152
8152

J. W. Nunziato
D. J. McCloskey
L. W. Davison

R. C. Luth

R. C. Maydew

J. K. Cole

C. W. Peterson
S. McAlees, Jr.
D. N. Benton (5)
D. D. McBride
W. R. Barton

W. L. Oberkampf
§. A. Landenberger (5)
W. L. Garner

P. W. Dean

J. B. Wright

J. C. Swearengen
M. T. Ferrario
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