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ABSTRACT

The interpretation of chemical analyses of groundwater collected at and near the Nevada
Test Site (NTS) has been vital in developing conceptual models of groundwater flow in the area.
These conceptual models are tested using recent chemical data generated by the Desert Research
Institute, as well as historic analyses from the U.S. Geological Survey. A total of 81 wells are
represented by analyses from 1957 to 1990, with generally excellent agreement between repeat
samples from the same location. As identified by previous workers, three hydrochemical facies
are represented by the samples: Ca-Mg—HCOs3 water in carbonate rocks or alluvium derived
from carbonates, Na~-K-HCO3 water in volcanic rocks and alluvium derived from volcanic
rocks, and a mixed facies found in many carbonate and alluvium water samples, and some
volcanic waters. There is a general lack of lateral continuity in chemical characteristics along
presumed flowpaths within each hydrologic unit (alluvium, carbonate, and volcanic). Though
a lack of continuity between basins on the east side of the NTS was expected for water in alluvial
and volcanic units due to the absence of interbasin flow, chemical differences observed within
individual basins suggest a dominance of vertical over lateral flow. Groundwater in volcanic
materials on the east side of Yucca and Frenchman Flats and on the west side of Pahute Mesa
and Yucca Mountain has a nearly pure Na-K-HCOj3 signature that reflects contact with
primarily volcanic material. Groundwater in volcanic units in the middle of the NTS and on the
east side of Pahute Mesa contains a higher proportion of Ca, Mg, Cl, and SOj4 than the other
volcanic waters and indicates the contribution of water from the upper carbonate aquifer and/or
hydrothermally altered regions. The lack of lateral chemical continuity in volcanic water on
Pahute Mesa is attributed to stratigraphic and structural complexities in the'volcanic units of the
caldera complex. Areal variations in conservative ions in the carbonate aquifer indicate that
though the lower carbonate aquifer may be considered a single hydraulic unit in gross flow
terms, it may be considerably more complex when evaluating solute transport. Striking
differences between groundwater in carbonate units at the south end of Yucca Flat and
groundwater upgradient indicate the contribution of water from volcanic units, either by
downward leakage or by lateral flow from structurally juxtaposed formations. A similar
contribution of groundwater from volcanic formations is indicated by sodium and chloride
concentrations in the carbonate aquifer near Fortymile Wash. The reduction in dissolved solutes
in the carbonate aquifer at the southeast end of the NTS, as compared to water sampled at the
south end of Yucca Flat, suggests a major contribution of groundwater flow coming from east
of the NTS.
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INTRODUCTION

The dissolved ionic constituents of groundwater are a record of the minerals the water has
contacted (either dissolving or precipitating) as it moves through soil and rock. As such, the
chemistry of the water can be used to trace groundwater movement. The chemistry of groundwater
in the Nevada Test Site (NTS) area has been instrumental in the development of the most basic flow
hypotheses for the region. For example, the movement of water from volcanic aquifers into the
regional carbonate aquifer in the vicinity of the NTS was deduced in large part by an increase in
sodium concentration in the carbonate groundwater sampled at and downgradient from the NTS
(Schoff and Moore, 1964). Low sodium concentrations in groundwater from the carbonate aquifer
in the vicinity of Indian Springs were used as evidence that a groundwater divide directs flow from
the NTS toward Ash Meadows rather than Las Vegas. Recognizing the importance of groundwater
chemistry to hydrogeologic interpretations, the U.S. Geological Survey (USGS) performed
extensive sampling in the NTS region that culminated with publications by Blankennagel and Weir
in 1973 and Winograd and Thordarson in 1975. Three hydrochemical facies in and near the NTS
were recognized: a Ca-Mg-HCO; facies from groundwater in carbonate rocks east and south of the
NTS, a Na-K-HCO:; facies from groundwater in volcanic rocks, and a Ca-Mg-Na-HCO3 (mixed
facies) in carbonate rocks beneath the NTS and in the east—central Amargosa Desert and Ash
Meadows areas (Schoff and Moore, 1964). '

The chemical data from which so many important conclusions were drawn are scattered
through a number of USGS publications, and a few are referenced as personal communications or
data on file in Denver USGS offices. Most of these data were obtained from samples collected in
the late 1950s and early 1960s, though a few new wells were drilled and sampled in the late 1970s.
The late 1980s and early 1990s have seen a resurgence of water sampling on the NTS, with samples
collected from pre-existing wells and 28 new wells. These samples have been collected and
analyzed by the Desert Research Institute (DRI).

This document compiles the USGS and DRI analyses in an effort to present a reasonably
complete dataset for groundwater chemistry at the NTS. No exhaustive effort was made to identify
all historic data; rather, the focus was on compiling the bulk of the analyses used to formulate
important ideas about groundwater flow at the NTS. Some data, particularly recent samples from
the Yucca Mountain area, have no doubt been overlooked. In cases where both old (1957-1977) and
new (1983-1990) samples were available for the same well, the analyses have been compared using
trilinear diagrams of ion percentages. In most cases, analyses compared well, so the datasets were
combined and mean values for the constituents and pH for a given well were calculated. By dividing
the wells into three groups based on the reported lithology of the sampling horizon (alluvium,
volcanic, carbonate), the arcal distribution of ions was mapped and compared to general
groundwater flow directions.

Data Sources

Chemical data for the period 1957 to 1977 were gathered from the following USGS reports:
Schoff and Moore (1964), Blankennagel and Weir (1973), Young (1965), Thordarson et al. (1962),



Robinson and Beetem (1965), and Dinwiddie and Weir (1979). These data are presented in
Appendix A. Well names used in the appendices and throughout the text of this report are consistent
with the names used in the 1991 edition of the Raytheon Services Nevada “NTS Drilling and Mining
Summary.” Wells are reported in the appendices in order of increasing Nevada state north
coordinate.

All analyses but one reported from the period 1983 to 1990 were performed by the Water
Analysis Laboratory of the Desert Research Institute. The one exception is the analysis from
UE-25p #1, performed by the USGS and reported by Benson and McKinley (1985). Some of these
DRI analyses have appeared previously in specific project reports prepared by DRI for the
Department of Energy. These data are presented in Appendix B. Together, the USGS and DRI
analyses represent 81 wells at and near the NTS (Figure 1). Average ion and pH values computed
by combining the 1957-1977 and 1983-1990 datasets are given in Appendix C.

The chemical analyses reported in the appendices were performed on samples collected in
several different ways. Samples were either collected during drilling and well development, with
permanent pumps installed in supply wells, with temporary pumps used for aquifer testing and
sampling, or with bailers. The degree to which a sample is representative of formation water varies
with each method, but also varies with how a method was applied (e.g., number of pumping volumes
before sampling) and sample collection and preservation procedures (e.g., filtering and acidifying
cation samples). No attempt was made to assign quality ratings to the analyses assembled for this
report because detailed sampling information was rarely available. However, it may aid the reader
to keep in mind the following generalizations. Many of the analyses reported in Appendix A and
the 1988 analyses from Pahute Mesa #3 in Appendix B were collected during drilling and well
development and the resulting analyses could be influenced by residual drilling fluids. In some
cascs, this means that the producing horizon is actually different from sample to sample (e.g.,
samples were collected from multiple formations in UE-16d Eleana, USGS HTH #1, and U-19d
#2). In Appendix B, samples from NTS supply wells were collected by pumping, and due to the
lengthy pumping history of these wells, these samples are the most likely to be representative of
formation water. These supply wells are those with “Water Well” in the name, plus UE-16d Eleana.
Wells located around Yucca Mountain (wells with a“WT” for water table in the name) were sampled
with a low volume piston pump and collected after pH , temperature, and electrical conductivity had
stabilized (Matuska, 1989). The other samples in Appendix B were collected with a discrete bailer.
The bailer was evacuated at the surface, lowered to a depth corresponding to a screened or open
interval, then a valve was opened for sample collection. Because the water collected was present
in the well bore, not the formation, there is the possibility that degassing of CO could have occurred
and altered the pH and ion concentrations, and that reactions with casing materials could have
occurred.

COMPARISON BETWEEN 1957-1977 DATA AND 1984-1990 DATA

Eighteen wells have chemical analyses available from both the earlier and later sampling
periods. Of these 18, 12 have no major change in salinity and relative ion percentages between the
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two groups. In a few cases (e.g., Water Well 2), there is no obvious break between the 1957-1977
and 19841990 data groups but there is a relatively large spread in the ion ratios of the earlier
analyses. This may be caused by continuing well development with pumping, resulting in more
representative formation water with time. The six wells with significant differences between the old
and new analyses are discussed below in the following order: UE~15d Water Well, UE-16f Eleana,
UE-16d Eleana, Army 6A, USGS Test Well D, and USGS HTH #1. Because there is little change
in overall salinity of samples from a given well, trilinear plots are used to discuss temporal changes
in measured chemical composition. On the plots,the water composition is represented as percentages
of the total milliequivalents per liter of cations (left triangle), percentages of the total
milliequivalents per liter of anions (right triangle), and a combined representation of the anions and
cations by projecting these points onto a central diamond.

A sample collected from UE~15d Water Well in 1989 is within 10% of the ion ratios of samples
collected in 1961 and 1962 (Figure 2). However, two samples collected in 1990 have shifted to
approximately 15 to 20% more calcium relative to other cations, as compared to the earlier samples.
Total salinity is essentially unchanged. It scems unlikely that preservation or analytical errors could
be the source of the difference because there are two independent samples defining each group, and
anion percentages remain stable. Rather, the difference may be related to a reduction in pumping
at the well that began in 1990 and culminated with the pump becoming inoperative in 1991. This
well is completed in fractured quartzite with a dolomite unit at the bottom of the hole. The 1960’s
and 1989 samples probably reflect water produced primarily from the quartzite. The change in
chemistry in 1990 could reflect mixing of water from the dolomite in the well bore in the long periods
between pumping in 1990. The shift in chemical composition is important because there has been
an increase in the tritium concentration in this well over the last 15 years (Lyles, 1990 and 1992).
Identifying the formations contributing water to the well would aid in determining the source of the
tritium. To this end, the inoperative pump in UE-15d Water Well should be pulled and hydrologic
logging performed.

Analyses are available from UE-16f Eleana from samples collected at the time of drilling and
testing (1977) and in 1988. The three samples show a progressive increase in the amount of HCO3
relative to the other anions, with the 1988 sample having greater than 95% HCO3, less than 5% Cl,
and essentially no SO4 (Figure 3). This trend could be the result of well development, meaning that
the most recent sample is the most representative of formation water.

The three 1977 samples from UE-16d Eleana were collected during drilling and show up to
10% shifts in ion percentages from one sample to another (Figure 4). Presumably, these variations
are related to different contributing horizons at the time of sampling. The 1977 sample most different
from the 1990 sample was collected on 6-19~77 and is recorded as being from the Eleana Formation
(quartzite). The well was recompleted in 1981 with the Eleana Formation cemented off and
perforations installed across the Tippipah Limestone, so it is not surprising that there are differences
between the 6-19-77 sample and the one in 1990. The greatest similarity in cations exists between
the 1990 sample and the one collected on 6-14-77. The 6-14 sample was the only earlier sample
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Figure 2.  Trilinear diagram showing relative ion percentages for samples collected from
UE-15d Water Well. The depth of the 1989 and 1990 samples is the location of the
pump. The well was open to 1829 m.
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Figure 4.  Trilinear diagram showing relative ion percentages for samples collected from well
UE-16d Eleana.



that was collected by pumping, and the similarity in chemistries suggests that the Tippipah
Limestone was probably the major contributing zone to the borehole during pumping in 1977.

The 1958 analysis of water from well Army 6A differs drastically from two analyses of samples
collected in 1986 (Figure 5). The total dissolved solids (TDS) concentration in the more recent
samples is about 7% lower than the earlier one, but the major difference is a large increase in the
amount of magnesium at the expense of sodium, and an increase in SOy at the expense of HCO3.
Schoff and Moore (1964) were suspicious of the 1958 analysis because it yielded 2 Na—K water in
an area where other water was a Ca~Mg type. The later analyses do not resolve the problem, but
instead make it one of a Mg—-SQy4 type water in a Ca-Mg-HCOQj area. Schoff and Moore concluded
that the earlier analysis did not represent formation water and suggested that it could have been
contaminated by cement used in the well during completion. However, the measured pH (8.0) was
much lower than what would be expected from a cement—contaminated water (greater than 11). The
later analyses also have reasonable pH values (around 8.6), and cation/anion charge balances are
very good for both the 1958 and later analyses.

Though cement contamination seems unlikely, water introduced during drilling could have
altered the in situ chemistry. Given that the well has a low production rate (1 to 2 gpm) and was
abandoned immediately, water introduced during drilling in 1955 may hot have been purged by the
time the sample was collected in 1958. The difference between the 1958 and 1986 analyses may
indicate that diffusive and/or advective flow have equilibrated the well with its surroundings. The
log of well Army 6A includes quartzite and limestone, but only quartzite and siltstone are intersected
by the perforated interval (Moore, 1962). Both the old and new analyses indicate equilibrium with
dolomite, and some source of sulfate is needed, neither of which are consistent with a quartzite
aquifer. Though anomalous, there are other wells with unusual chemistries in the area (USGS HTH
“F’ and Army 6) that have been attributed to hydrothermal activity and/or as yet undetected
evaporite deposits in the subsurface. Pumping the well at a low flow rate, monitoring field
parameters, then sampling after purging many well volumes could reduce the uncertainty about the
chemistry of this well.

Samples collected in 1986 from USGS Test Well D are substantially lower in TDS than the one
collected in 1961. This difference in TDS is not reflected in any change in cation ratios (Figure 6),
but a shift to a higher proportion of HCO3 in the 1986 samples is due to lower Cl and sulfate
concentrations in those samples as compared to the 1961 sample. The 1960 sample was collected
from a bailer after three hours of nearly continuous bailing had removed 12,000 liters (3100 gallons)
from the well (Thordarson et al., 1962). Though care was taken to minimize contamination of
groundwater by using a cable—tool rig and not introducing bentonite or chemical additives in the
zone of saturation, the aquifer was penetrated by at least 16 meters (53 ft) and water was injected
in the hole for cuttings removal, before groundwater was recognized. The hole also experienced
serious caving problems both from the overlying tuff units when the hole penetrated the carbonates
(with blocks of tuff falling into the bailer), and from interbedded siltstone and argillite formations.
Fine material from these horizons may have dissolved into the well water and added to the TDS
concentration. Though no extensive well development or pumping is known to have occurred at
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USGS Test Well D between 1961 and 1986, equilibration of well water with the carbonate aquifer
by advective or diffusive flow is reasonable over this time scale. Though the ionic composition of
the 1986 samples may be more representative of formation water, the lower pH of the 1961 sample
may be closer to in situ conditions. The 1986 samples were collected with a discrete bailer without
previous purging of wellbore water, so some degassing of CO; and elevation of pH could have
occuried. As with Army 6A, new samples from this well should be collected after pumping and
monitoring field parameters.

Some of the variation observed at well USGS HTH #1 (Figure 7) comes from sampling from
two discrete aquifers. Samples from the underlying carbonate aquifer were only collected in 1961
and 1962. These are the samples with the highest calcium percentages. The other samples collected
in 1960 and from 1986-1990 were collected from volcanic zones and show higher proportions of
sodium and bicarbonate, with the 1986—1990 set clustering more in the Na and HCO; apexes. All
of the samples together appear to form a mixing line between a higher salinity, carbonate-influenced
water and a lower salinity, volcanic-influenced water. This suggests that differences between
individual samples relate to their collection position in the borehole rather than any hydrochemical
changes-with time. Flow relationships between the five perforated intervals in USGS HTH #1 and
how they relate to the 19861990 samples are discussed by Lyles et al. (1991).

AREAL DISTRIBUTION OF DISSOLVED IONS IN GROUNDWATER

The three hydrochemical facies identified by previous workers are also represented in the
averaged dataset created by combining the 1957-1977 data with the 1984-1990 data. Groundwater
ranges from a Ca-Mg-HCQj3 water to a Na-K-HCOj3 water, with a rough mixing line between the
two on the cation triangle (Figure 8). Water from volcanic rocks predominates in the Na-K area,
while water from the carbonate rocks has generally higher percentages of calcium and magnesium.
Most waters from carbonate rocks have a mixed chemical character, as do some volcanic aquifer
waters. Water from alluvial deposits spans the chemical spectrum, depending on the source rock for
the alluvial material. With the exception of a few outliers, there is less variation in anion percentages,
with most waters dominated by bicarbonate.

The chemistry of the combined dataset continues to strongly support the hypothesis of Schoff
and Moore (1964) and others that two distinct types of water develop depending on whether
groundwater moves through a volcanic or carbonate aquifer. Significantly, the mixed nature of many
samples from the NTS area indicates a water that has moved through both types of material.

Given the importance of aquifer material on groundwater chemistry, the combined 1957-1990
dataset was subdivided into three groups: wells completed in alluvium (14 wells), wells completed
in carbonate rocks (17 wells), and wells completed in volcanic rocks (50 wells). This simplistic
designation, while easy to make in many cases, was more problematic in others. An example is
UE-16f Eleana, which is completed in the Eleana Formation, comprised of siltstone, sandstone, and
quartzite with minor limestone. This well was grouped with the carbonates because the lithology
seemed to have more in common with that group than with the volcanics or alluvium. However, it
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Figure 7.  Trilinear diagram showing relative ion percentages for samples collected from well
USGS HTH #1. Samples C and D (with a “c” after the date) were collected from
carbonate rocks, while all of the others were from volcanic units.
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Figure 8.  Trilinear diagram showing relative ion percentages for samples collected from all
wells reported in this study, differentiated based on aquifer rock type. Aquifer
designations are as follows: A=alluvium, C=carbonate, and V=volcanic. Averaged
values used to construct this diagram are reported in Appendix C.
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has essentially 100% Na+K in terms of cations, making it chemically unlike the other carbonate
wells and more similar to the volcanics. Despite such problems, aquifer designations were made
based on rock type rather than by second guessing the chemical interpretations to follow.

The chemical data were examined in the context of our present knowledge of the physical flow
system. Groundwater flow directions in the NTS area have been suggested based on geologic and
geophysical information, water-level data, precipitation data, spring discharge measurements,
aquifer test data, as well as water chemistry. Though considerable uncertainty in flow boundaries
and inter—unit flow exists, workers have generally agreed on the gross regional groundwater flow
directions at the NTS. Flow is believed to move primarily in a north—to—south direction across the
NTS with an additional component of northeast to southwest flow (Figure 9). Flow southward
through Yucca Flat into Frenchman Flat is joined by a component of westerly flow from Emigrant
Valley and other areas east of the NTS. After passing through Mercury Valley, there is a
southwestward turn as groundwater moves toward the discharge area in Ash Meadows. Components
of groundwater flow beneath Pahute Mesa move southward into the Fortymile Wash structural
feature and on to discharge at Alkali Flat and in Death Valley. There is also southwestward flow from
Pahute Mesa to Oasis Valley. Flow relationships between the east and west sides of the NTS are less
certain, with postulated flow from Pahute/Rainier Mesas into Yucca Flat in the north and possibly
from western Yucca and Frenchman Flats to Jackass Flats in the south.

The following sections compare the chemical data for each type of aquifer material with the
postulated flow directions discussed above. Well water chemistry is represented on maps using Stiff
diagrams. The Stiff diagrams show the geochemical similarities and differences among wells; the
cation concentrations are plotted on the left side of each Stiff figure in units of milliequivalents per
liter, while the anions are similarly plotted on the right side. The graphical similarities/differences
between Stiff diagrams represent the geochemical similarities/differences of the water samples
collected from each well (Hem, 1985).

Alluvium Wells

All wells providing water samples from alluvial material in this study are located either in the
eastern part of the NTS or east of the NTS (Figure 10). Regional (interbasin) groundwater flow
beneath the eastern part of the NTS is believed to occur only through carbonate rocks (Winograd
and Thordarson, 1975). Groundwater in alluvial deposits is isolated in each basin, so regional trends
in ion concentrations would not be expected in wells completed in alluvium. For example, USGS
Water Well A and UE—6d are in Yucca Flat, while Water Well SB and Water Well 5C are in
Frenchman Flat. Alluvial materials are absent in some locations and unsaturated in others between
Yucca and Frenchman Flats so that water cannot flow from UE-6d to Water Well 5B without
entering volcanic and carbonate units. This segmentation of alluvial water is reflected in the areal
distribution of ions shown on Figure 11. The difference in ion concentrations within an individual
basin (e.g., sodium at Water Well 5B is 97 mg/L, while at Water Well 5C it is 129 mg/L) is also
marked and suggests a lack of well-developed lateral flow systems that would homogenize chemical
character within each basin. The logical extension of this observation is that vertical flow dominates
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in the alluvium. The one exception appears to be the saturated alluvium in the vicinity of wells Army
#2 and Army #3, where there is good consistency in ion concentrations.

Carbonate Wells

As with the alluvium wells, all but one of the carbonate wells for which chemistry data were
available are located on the eastern part of the NTS, or east of the NTS (Figure 12). Flow is believed
to move through carbonate rocks from the north end of Yucca Flat, through Frenchman Flat and
Mercury Valley. A westward flowing component joins this southerly component from the area
sampled by USGS HTH #10 and USGS HTH #4, and points east, and this combined system moves
in a southwestwardly direction toward Ash Meadows. Quartz and Sand Sprirgs, also east of the
NTS, occur in the Pintwater Range and represent perched water that does not contribute to the
regional flow system. The one western carbonate well, UE-25p #1, is located in the Fortymile Wash
drainage, where flow is believed to be more directly southward to Ash Meadows.

Though the carbonate aquifer is considered a regional aquifer system, the groundwater
chemistry reveals that the units intersected by the carbonate wells are not chemically homogeneous.
Though some of the variation in ion composition seen on the carbonate map (Figure 13) can be
attributed to the lumping of all pre~Tertiary, units for mapping purposes (in particular, UE-15d
Water Well, UE-16d Eleana, and UE-16f E{eana are not sampling the lower carbonate aquifer),
unaccounted shifts in ion concentrations occur. For example, USGS Test Well D and UE-1¢ sample
carbonate units about 3000 m (10,000 ft) apart in mid—Yucca Flat. Dissolved chloride is over 1.5
times higher at USGS Test Well D and dissolved sodium is almost three times greater than at UE~1c.
UE-Ic is located farther to the south (downgradient) and thus would be expected to either have
similar or higher dissolved ion concentrations than USGS Test Well D. Moving farther southward
along the presumed flow direction, chloride and sodium values increase markedly at USGS Water
Well C and Water Well C-1, indicating a contribution of water from volcanic units. Water could be
moving into the carbonates by enhanced downward leakage through volcanics and alluvium beneath
Yucca Lake or laterally where volcanic units are juxtaposed with carbonates along faults. USGS
Water Well C and Water Well C-1 are located in the upper plate of a low-angle thrust fault
(Winograd and Thordarson, 1975), which probably abuts volcanic units to the north of the wells.
The very old radiocarbon age of water in Water Well C—1 (greater than 30,000 years before present;
Boughton, 1986) indicates that the water has had a long residence time, whether derived from lateral
or vertical flow. Relatively high chloride and sodium concentrations at UE-25p #1 similarly indicate
a contribution of volcanic water to the carbonate aquifer in the Fortymile Wash area. Saturation
calculations show that all of the carbonate waters are saturated with respect to calcite and quartz,
whether they have mixed with volcanic water or not.

The wide concentration variations in conservative ions such as chloride and sodium suggest
a complex carbonate system possibly containing isolated flow units such as the fault block
containing the C wells. Transmissivity in the lower carbonate aquifer is structurally controlled and
known to have a wide range in values. However, hydraulic testing indicates that water-bearing
fractures are reasonably well connected, creating a grossly homogeneous aquifer (Winograd and
Thordarson, 1975). In addition, Winograd and Thordarson report nearly identical chemical analyses
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for water from different formations comprising the lower carbonate aquifer, sampled within a single
well. Despite this earlier work, the range in groundwater chemistry in the carbonate aquifer across
the eastern portion of the NTS indicates that though the lower carbonate aquifer may be considered
a single hydraulic unit in gross flow terms, it may be considerably more complex when considering
solute transport.

One feature of the carbonate hydrochemical map that can be explained is the significant
decrease in dissolved ion concentrations that occurs between the south end of Yucca Flat and
Mercury Valley, as typified by the halving of chloride and reduction by two--thirds in sodium
concentrations from USGS Water Well C to Army #1 Water Well. Such a reduction in conservative
ions could only occur with the addition of a lower salinity water to the system. Leakage from the
alluvium and volcanic aquifers in Frenchman Flat cannot be a source of dilution because sodium
ccncentrations are much higher in those units than those at Army #1 Water Well. A more likely
source of dilution, suggested by most flow models, is the movement of water from points east and
south in the carbonate units. Groundwater in the USGS HTH #4 and #10 area probably originates
as techarge in the northern Spring Mountains (Byer, 1991; and Sadler et al., 1991). The low salinity
and relatively low calcite saturation index at these wells supports the relatively young ages
(approximately 5000 years) calculated for groundwater in the area using a discrete-state
compartment model (Sadler et al., 1991). Using ion concentrations averaged between those of
USGS HTH #10 and USGS HTH #4 to represent underflow from the east, the relative contributions
from Yucca Flat (as represented by USGS Water Well C and Yater Well C-1) and ‘he east=m area
required to producs the water sarnpled from Army #1 Water Well are approximately 30% water .rom
Yucca Fiat and 70% water from the east. These approximate percentages are upheld by all of the
major ion concentrations with the exception of sulfate (Table 1). Several other wells in the vicinity
of Army #1 Water Well Lave high sulfate concentrations (Army 6 and Army 6A), suggesting a local
source for dissolved sulfate, either from hydrothermally altered .ocks or gypsum deposits.

Table 1. Dissolved ion concentrations in mg/L for wells in three areas of the carbonate aquifer
and calculated mass percentages needed to create water at Army #1 Water Well from

the nther two typ~s.
ITon Concentration Concentration Concentration Percent from Percent from
inWellC inHTH4& 10 in Army#1 Yucca Flat  east of NTS
Ca 65 36 44 35 65
Mg 28 18 21 30 70
Na 125 10 38 25 75
K 14 2 5 30 70
Cl 32 6 16 40 60
SOy 65 16 53 75 25
HCO; 555 197 257 15 85
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Another possible explanation for the difference between the “C”’ wells and Army #1 Water Well
is that water from USGS Water Well C and Water Well C-~1 is not representative of the carbonate
water composition leaving Yucca Flat. This would assume that the well C structural block is isolated
from the rest of the flow system and that flow from Yucca Flat is typified by the composition of water
from Water Well 2, UE~1b, and UE~Ic. This scenario would allow little or no contribution of water
from the east, and is not compatible with the conceptual groundwater flow models.

Volcanic Wells

Wells that penetrate volcanic units are found throughout the NTS (Figures 14 and 15). in the
eastern area, coincident with the areas where there are alluvium and carbonate wells, the volcanic
aquifers are not believed to form continuous interbasin flow units. As with groundwater in the
alluvium, it is believed that water in the volcanics must discharge to the carbonate aquifer to flow
from Yucca Flat to Frenchman Flat and then to Mercury Valley. Spatial variations in ion
concentrations from these wells suggest the absence of a well-integrated lateral groundwater flow
system (Figure 16). One general pattern is suggested by the data, however. Wells on the west side
of Yucca and Frenchman Flats tend to have higher calcium and magnesium concentrations and lower
pH values than wells to the east. This is balanced by lower sodium concentrations and/or higher
chloride and sulfate concentrations. The wells showing the higher calcium and magnesium values
are USGS HTH “F’, Pluto 1, Pluto 5, UE~-1a, and to a lesser extent Well 3 and Water Well #4. An
exception to this trend is well UE-14b, located in Mid Valley, which does not have notably high
calcium and magnesium concentrations, but does have higher sulfate than the eastern wells. The
higher calcium and magnesium concentrations in the western Yucca and Frenchman wells (UE-1a,
Well 3, Water Well #4) may reflect the movement of groundwater into volcanic units from the upper
carbonate aquifer in the structurally complex area along the Eleana Formation subcrop bounding
western Yucca Flat. The impact of hydrothermally altered rocks is believed to account for the higher
sulfate concentration in J-11, USGS HTH “F”’ and possibly UE-14b. The Pluto wells sample
perched water that probably receives calcium via surface recharge processes.

A lack of intrabasin chemical continuity is particularly noteworthy in Frenchman Flat where
both sodium and bicarbonate are twice as high in Water Well SA than in UE-5¢ Water Well, less than
10 km (six miles) to the north. In this cas. , and per-~—~ ~thers, structural features may have isolated
the volcanic units. Water Well 5A is on the oppr * ide of the Rock Valley Fault System from
UE-Sc Water Well and a 4 m (13 ft) difference in hexu - alues attests to some hydraulic discontinuity
between the two areas.

Though chemical variations in water from volcanic wells on Pahute Mesa are generally less
than variations found elsewhere on the NTS, ion concentrations in well water on the Mesa do not
vary in 2ny pattern consistent with postulated flow directions (Figure 17). This may indicate that
the complex secaence of volcanic units beneath Pahute Mesa does not constitute a single, unified
flow system. Within the saturated zone, the vertical and horizontal distribution of permeable ash—fall
and ash~flow tuffs and lava flows that comprise the aquifers of Pahute Mesa is highly variable, even
over short distances. This stratigraphic variability, coupled with structural control of groundwater
flow tt rough fractures in a complex caldera environment, results in a hydrologic system that does
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not have predictable continuity in lateral directions. The apparent lack of consistent chemical
changes in downgradient directions may actually result from an incompleie understanding of flow
path directions. In addition, some variability results from sampling perched horizons that may have
been contaminated by drilling fluid (at U-19ba and U-19az).

Blankennagel and Weir (1973) observed that hydraulic heads decreased with depth beneath the
eastern part of Pahute Mesa (indicating a potential for downward flow) and that heads increased with
depth beneath western Pahute Mesa. In addition, they also observed that while sodium and
bicarbonate were the dominant ions in all Pahute Mesa groundwater, there was proportionally more
calcium in the area of downward flow and more sulfate and chloride in the zone of upward flow.
The new data blur the distinction for cations, but the difference in anions is similar (Figure 18).
Sulfate is often associated with hydrothermal alteration and is consistent with an area where deeper,
older water is moving upward in the groundwater system.

Another cluster of volcanic aquifer samples is located in the southwest corner of the NTS
(Figure 16). A major hydrologic feature in this area is Fortymile Wash, which is believed to mark
a zone of higher hydraulic conductivity and greater recharge (Byer, 1991; Sadler et al., 1991). With
the newer samples, the chemical similarity between J-12 Water Well and J-13 Water Well can now
be extended further north along the wash to UE-25 WT #14, which has an ionic composition very
similar to the downgradient wells. Even farther to the north, UE-25 WT #15 is also similar to the
other Fortymile Wash samples but has a higher percentage of sodium and bicarbonate. Well UE-18t
is located much farther north, near the head of the wash and has a greater dissolved ion content than
the southern Fortymile Wash wells. The lower salinity of the downgradient wells may reflect the
diluting effect of infiltrating recharge along the length of the wash.

The southern Fortymile Wash wells have about five times the amount of calcium and over 10
times the amount of magnesium as the two wells (USW WT-7 and USW WT-10) in the drainage
basin west of Yucca Mountain. The western wells have a dominantly Na-HCO; signature
characteristic of water from volcanic aquifers. The higher concentration of calcium and magnesium
in the Fortymile Wash area may indicate a contribution of water from underlying carbonate rocks,
infiltration of rainfall that dissolves near—surface calcium deposits, or mixing with water from areas
east of Fortymile Wash, where higher dissolved ion concentrations are attributed to interaction with
hydrothermally altered rocks. Groundwater from J—11 represents this higher Ca—SQO4 water, which
is also found at USGS HTH “E.” The chemistry of the carbonate water in Fortymile Wash, as
sampled by UE-25p#1, indicates mixing of volcanic water into the carbonate unit rather than
movement of water from the carbonates to volcanics. Either this mixing occurs outside the area
sampled by the volcanic wells (e.g., where the carbonates abut the nearby caldera complexes), or
the calcium and magnesium in the volcanic wells must be from one of the sources other than the
underlying carbonate. Based on geochemical and isotopic data, Matuska (1989) concluded that flow
from the carbonates into the volcanics in the Fortymile area was unlikely.
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CONCLUSIONS

Groundwater samples from 81 locations at and around the NTS have been analyzed for major
disso!ved constituents. Twenty—seven of these locations are new additions sampled by DRI after
publication of major interpretive reports by the USGS. Eighteen locations were sampled by both
DRI and the USGS with generally excellent agreement between results. Most cases with
discrepancies can be explained by continued well development or changes in well completion over
the years.

The new data support the occurrence of three hydrochemical facies in the NTS area, identified
by previous workers. The distribution of these facies, in particular the presence of mixed cation
water in the carbonates, has led to significant conclusions regarding gross groundwater flow by
suggesting the movement of water from volcanic aquifers into the carbonate aquifer. However, when
examined in detail, the hydrochemistry of the samples in this study is not fully compatible with
concepts of regional lateral flow in the carbonate aquifer. There are wide variations in concentrations
in generally conservative ions that suggest that though the carbonate aquifer may be considered a
single hydrologic unit in gross flow terms, it may be considerably more complex when considering
solute transport. The chemistry in wells at the south end of Yucca Flat and near Fortymile Wash
indicates a greater contribution of water from volcanic units to the carbonate aquifer in these areas
than found elsewhere at the NTS. Ionic concentrations indicate that at the southern end of the NTS,
the majority of water in the carbonate system originated from areas east and south of the NTS, with
only about 30% of the water coming from southern Yucca Flat.

While differences in chemistry in alluvium and volcanic wells between basins in the eastern
NTS were expected because of a lack of interbasin flow, the absence of homogeneous chemical
character within single basins suggests a lack of well-developed lateral flow systems and dominance
of vertical groundwater flow in these units within each basin. Relatively higher calcium and
magnesium in volcanic wells in the south—central part of the NTS (west side of Yucca and
Frenchman Flats and east side of Jackass Flats) may reflect movement of water from the upper
carbonate aquifer into the volcanics and contributions from hydrothermally altered areas. The
low—calcium water found in eastern Yucca and Frenchman Flats and west of Yucca Mountain is
typical of water that has encountered primarily volcanic material along its flowpath. Consistent
chemical patterns could not be identified in the volcanic aquifers of Pahute Mesa, presumably
because of complex stratigraphic and structural controls. In the southwestern part of the NTS,
chemical homogeneity supports groundwater flow in volcanic units along Fortymile Wash, while
the calcium and magnesium concentrations suggest a contribution of water from hydrothermally
altered rocks in the area east of Fortymile Wash or from infiltration of rainfall that dissolved near-
surface calcium deposits.
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APPENDIX A

Water chemistry data from samples collected between 1957 and 1977
from wells at and near the NTS. Data are from the USGS, with data
sources listed in the text. Well names are consistent with those used in the
1991 edition of the Raytheon Services Nevada “NTS Drilling and Mining
Summary.” Wells are in order of increasing Nevada state north
coordinate.
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APPENDIX B

Water chemistry data from samples collected between 1983 and 1990
from wells at and near the NTS. Samples were collected and analyzed by
DRI. Well names are consistent with those used in the 1991 edition of the
Raytheon Services Nevada “NTS Drilling and Mining Summary.” Wells
are in order of increasing Nevada state north coordinate.
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APPENDIX C

Combined chemical dataset of samples collected from 1957 to 1990, with
averages calculated for locations where multiple samples have been
collected. The data in this table were used to construct the maps in Figures
11, 13, 16, and 17. Well names are consistent with those used in the 1991
edition of the Raytheon Services Nevada “NTS Drilling and Mining
Summary.” Wells are grouped according to producing formation and
ordered within each group according to increasing north coordinate.
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